Tampilkan postingan dengan label GLP-1. Tampilkan semua postingan
Tampilkan postingan dengan label GLP-1. Tampilkan semua postingan

Kamis, 04 Februari 2016

Minimal Amounts of Fish Peptide Hydrolysate Double Fat Loss Compared to Whey Isolate on Energy Restricted Diet

I certainly recommend eating fish. Whether I will be recommending fish hydrolysate supplements in the future, however, will have to be determined when additional studies with different baseline diets will have been published.
You may remember that I've written about fish protein hydrolysates / peptides before. Unlike today's article, however, previous articles dealt with the effects of fish protein in rodents. Intrigued by in vitro and animal studies showing that fish-derived peptides demonstrated antihypertensive (Hatanaka. 2009; Kim. 2012; Li. 2012; Ngo. 2011), antioxidant (Nazeer. 2012; Najafian. 2012), immunomodulating effects (Duarte. 2006), reparative properties in the intestine (Fitzgerald. 2005; Marchbank. 2008), and effects in reducing plasma cholesterol and triglycerides levels (Möller. 2008), a group of Italian researchers decided to investigated the effect of Slimpro(R), a supplement containing commercially available fish protein hydrolysate from blue whiting (Micromesistius poutassou), on body composition and on stimulating cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1) secretion in 120, overweight, non-obese (25 kg/m² < BMI < 30 kg/m²), male (25%) and female (75%) subjects aged 18 - 55 year.
Do not underestimate fish as a protein source - fish is more than just omega-3!

Salmon Better Than Whey?

Cod protein for recovery

Krill = Super Protein?

Fish Kicks Casein's Ass

Fast vs. slow protein

5x More Than FDA Allows
Unlike the product that was used may suggest, the study was not sponsored by the supplement company. The authors received neither funding nor other external support and they also declare that they don't have a conflict of interest that may be related to patents or direct involvements in the industry. I guess it's important to point that out, even though fact that the scientists chose whey, i.e. an actually relevant control, instead of carbohydrates or just plain water, may have given away the lack of sponsorship, anyways.

Two weeks before the study started, subjects were asked to fill in an alimentary diary reporting their food preferences. A mild hypocaloric ( 300 kcal/day) diet was elaborated for each subject by a dietitian based on subject’s food preferences and habits as reported in the alimentary diary.
Figure 1: The low protein content of the diet is - as highlighted in the annotations to this graphical illustration of the macronutrient composition of the test diets - problematic, to say the least.
Approximately, 55% of energy intake was from carbohydrates, 25% from lipids, and the remaining 20% from proteins. Part of these 20% of protein were either 1.4g and 2.8g of fish protein or 1.4g of whey protein isolate as a control (I just assume that the dosage was 1.4g, because there was only one whey group), which were consumed in form of a flavored shake according to the following protocol:
"Both the active (one dose treatment arm) and the placebo products were taken as follows: ‘dilute the content of one sachet in a large glass of cool water (200 ml). Shake or stir with a spoon. Consume within 10 30 min before the main meal’. In the case of two-dose treatment arm, one sachet of the active product was taken 30 min before lunch and one sachet 30 min before dinner" (Nobile. 2016).
To be able to tell what could be responsible for advantages or disadvantages of the two treatments, the scientists assessed more than just body weight, fat mass (DXA scans), and safety of use as well as the secondary efficacy endpoints, extracellular water, and the circumference of waist, hips, and thighs. They also checked the CCK and GLP-1 levels in their subjects' blood. This is relevant, because this is how the fish hydrolysate is advertised on the manufacturers website:
"Taken daily before meals, Slimpro® increases the production of CCK and GLP-1 in the body, thus amplifying messages associated with a decrease of food intake. Promising results were reported from in vivo et in vitro trials of these molecules that may control food intake. Scientists have described this ingredient as a direct action on the hunger process" (Nobile. 2015).
As it is usually the case in studies like this, some patients were "lost". In this case, we're talking about a total count of eleven subjects who did not reappear for the follow-up check (One subject in the one-dose treatment arm, four subjects in the twodose treatment arm, and six subjects in the placebo treatment arm discontinued intervention because they were no longer interested to participate in the study). The results of the other subjects are plotted in Figure 2:
Figure 2: Changes in body composition after 45 and 90 days of dieting w/ the specific supplements (Nobile. 2016).
As you can see, double-dosing had astonishingly little effect on the subjects' ability to lose body fat. That's in contrast to switching from fish protein hydrolysate to whey protein isolate, which produced measurably, but not statistically reduced rates of fat loss and waist reductions.
Figure 3: Blood biomarker levels. (a) CCK blood levels and (b) GLP-1 blood levels. Intragroup (vs. D0) statistical analysis is reported upon the bars of the histogram. The lines report the intergroup (vs. placebo) statistical analysis. Statistical analysis is reported as follows: *p < 0.05, **p < 0.01, and ***p < 0.001. Data are mean +/- SE (Nobile. 2016).
And guess what: Even though the bars don't look like it, the asterisks over the bars tell you that these differences may be caused by the same differential expression of the satiety hormones CCK and GLP-1 in the fish hydrolysate vs. whey protein group that has been observed with other control protein in previous studies and is boldly advertised on the producer's website.
Great! Let's eat more fish... It stands out of question that the former is actually a very good idea (assuming you make the right fish choices). I have to warn you, though: Firstly, the fish protein consumed in the study at hand came from fish, but just like whey protein and milk, fish and fish protein hydrolysates will also have different effects.

Is Wild Caught Fish Always the Better Choice? With Sign. More N3 and Less Pollutants?  Learn more!
What is probably way more important, however, is the relative protein deficiency of the subjects. With only 20% of the diet being protein, the study participants hovered around at the meager level of the RDA. Since the effects of 1.4g of fish protein hydrolysate you throw on top of a low protein diet are probably very different from those of the same amount of fish protein consumed alongside 2g/kg of dietary and supplemental protein, I wouldn't guarantee and in fact even doubt that you would see a similar almost 100% increase in fat loss while dieting - and still,  the CCK and GLP-1 boosting effects of fish protein hydrolysates are intriguing | Comment on Facebook!
References:
  • Duarte, Jairo, et al. "Immunomodulating capacity of commercial fish protein hydrolysate for diet supplementation." Immunobiology 211.5 (2006): 341-350.
  • Hatanaka, Akimasa, et al. "Isolation and identification of antihypertensive peptides from antarctic krill tail meat hydrolysate." Journal of food science 74.4 (2009): H116-H120.
  • Kim, Se-Kwon, Dai-Hung Ngo, and Thanh-Sang Vo. "Marine fish-derived bioactive peptides as potential antihypertensive agents." Adv Food Nutr Res 65 (2012): 249-260.
  • Li, Ying, et al. "Purification of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide with an antihypertensive effect from loach (Misgurnus anguillicaudatus)." Journal of agricultural and food chemistry 60.5 (2012): 1320-1325.
  • Marchbank, T., et al. "Clinical trial: protective effect of a commercial fish protein hydrolysate against indomethacin (NSAID)‐induced small intestinal injury." Alimentary pharmacology & therapeutics 28.6 (2008): 799-804.
  • Möller, Niels Peter, et al. "Bioactive peptides and proteins from foods: indication for health effects." European journal of nutrition 47.4 (2008): 171-182.
  • Nazeer, R. A., NS Sampath Kumar, and R. Jai Ganesh. "In vitro and in vivo studies on the antioxidant activity of fish peptide isolated from the croaker (Otolithes ruber) muscle protein hydrolysate." Peptides 35.2 (2012): 261-268.
  • Najafian, L., and Abd Salam Babji. "A review of fish-derived antioxidant and antimicrobial peptides: their production, assessment, and applications." Peptides 33.1 (2012): 178-185.
  • Ngo, Dai-Hung, et al. "Free radical scavenging and angiotensin-I converting enzyme inhibitory peptides from Pacific cod (Gadus macrocephalus) skin gelatin." International journal of biological macromolecules 49.5 (2011): 1110-1116.

Rabu, 30 September 2015

3.8 vs. 2.3 g/kg Protein + Exercise to Improve Body Comp. | Digestive Enzymes to Pimp Vegan Proteins | High Protein vs. MUFA Meals for GLP1 | ISSN Research Review '15 #3

"If some is good, more is better!" Unfortunately, this simple maxime does rarely apply when it comes to the physiological response to certain foods and/or supplements. For protein, however, it appears as if the relation holds - at least as long as protein does not become the only energy source in your diet.
I guess by now I can simply skip the lengthy introduction telling you about how I didn't want to cherry pick only three out of more than twenty newsworthy studies that were presented at the Twelfth International Society of Sports Nutrition (ISSN) Conference and Expo in 2015, when I started writing this series right (click here if you have missed the previous articles)?

Well, that's good because it leaves more room for a brief preview of the studies I am about to discuss in today's third serving of the SuppVersity ISSN Research Review 2015 - studies that are all related (in one way or another) to increased protein intake. Either in overweight or obese people, for whom higher protein meals increase the post-prandial increase of the "satiety hormone" GLP-1, or in vegans, vegetarians and everyone else who wants to make the most of his vegetable protein sources (pea and rice protein, to be precise) by adding digestive enzymes to the mix, or - last but not least - gymrats who ramp up their protein intake from 2.3 to 3.8 g/kg body weight to see even more pronounced improvements in body composition.
Read more about ISSN and other studies at the SuppVersity

Vitargo, Red Bull, Creatine & More | ISSN'15 #1

Pump Supps & Synephrine & X | ISSN'15 #2

High Protein, Body Comp & X | ISSN'15 #3

Keto Diet Re- search Update | ISSN'15 #4

The Misquantified Self & More | ISSN'15 #5

BCAA, Cholos-trum, Probiotics & Co | ISSN'15 #6
  • High protein, high GLP-1, ... highly beneficial? As a SuppVersity reader you are aware of the far-reaching metabolic effects of GLP-1 on appetite (suppression | Näslund. 1999), glucose and fat metabolism, as well as thermogenesis (Lejeune. 2006). Against that background, you will know that the small, but statistically significant increase in GLP-1 Franklin et al. (2015) observed in their latest study which compared the effects of a high protein and high mono-unsaturated fat meal on the well-known incretin hormone may have significant long-term effects even though the blood glucose levels of the study's twenty-four overweight or obese participants (male/female: 12/12; age: 38.7 ± 15.3 (mean ± standard deviation) years; BMI: 31.6 ± 4.0kg/m²), who consumed isocaloric meals containing either 35.2% energy from fat and 20.7% from monounsaturated fat (HMF meal) or 31.9% energy from protein (HP meal), did not trigger differences in post-prandial glucose levels at 30, 60, 120, and 180 min.

    Figure 1: Levels of active GLP-1 in response to high protein (HP) or high MUFA (HMF) meals (Franklin. 2015).
    To believe that "simply eating more protein" is going to solve all your weight problems, though, would be short-sighted - especially for the overweight obese for whom the study at hand as well as previous studies investigating the effects of GLP-1 on glucose metabolism suggest that they may benefit to a lesser extent from protein induced increases in GLP-1 than lean individuals, in whom the "satiety hormone" will trigger much more pronounced β-cell responses that in in patients with sign. insulin resistance and pre- or full-blown type 2 diabetes (Kjems. 2003).

    If that sounds like you, using the high(er) protein meals in conjunction with an energy restricted diet to lose weight and thus to improve your insulin sensitivity can obviously still be beneficial. Without a planned, reasonable caloric deficit, however, high(er) protein intakes alone are probably not going to "cut it" (all puns intended).
Even if weight loss is the goal, training fasted and thus hungry does not appear to provide significant benefits. Learn more about this longstanding myth and the reality in my write-up of Schoenfeld et al's seminal paper on fasted cardio and fat loss. A paper that finally had a long-standing and die-hard fat loss myth tumble.
Are you hungry before your workouts? In this case you may be interested in the results of a paper by Nystrom et al.' who suggest that athletes have to use "more proactive strategies [...] to optimize training adaptations". Why's that? Well, of the 481 (240 women, 241 men) NCAA Division I athletes representing eleven intercollegiate sports from three universities in three athletic conferences (i.e., Atlantic 10, Atlantic Coast Conference, Conference USA) who participated in the researchers investigation into the nutrient timing habits of Division I NCAA athletes, 79% reported feeling hungry prior to training, practice or competition - and that despite the fact that most of them had breakfast. It is thus well possible that the amount and types of foods athletes eat before their workouts do still receive (too) little by athletes and their athletic departments which often provide post-workout meals, but fail to do so pre-workout.
  • Pimp my plant protein - digestive enzymes can do the trick! Despite the fact that pea and other protein powders have become widely (and cheaply) available over the past years, vegan and vegetarian athletes and gymrats are still having a harder time satisfying their protein requirements than their omnivore competition or gym-buddies. Against that background and in view of the fact that more and more athletes are "going vegan" or at least vegetarian, the latest study by Julie Minevich (2015) and colleagues from the University of Tampa and the formulators, manufacturers and vendors of digestive enzymes and respective supplements from Chemi-Source and Increnovo LLC, was in fact published quite timely. A study that was designed...
    "to investigate if co-ingestion of a plant protein specific digestive enzyme blend (Digest-All® VP, a proprietary enzyme blend consisting of protease 6.0, protease 4.5, peptidase, bromelain and alpha-galactosidase, Chemi-Source, Inc., Oceanside, CA) can reduce the significant differences in amino acid appearance in the blood between plant and animal proteins" (Minevich. 2015).
    To this ends, 11 resistance-trained male subjects (age: 21.4 ± 1.5 years, body weight: 82.5 ± 3.9kg, height: 177.3cm ± 6.1cm | average training status of 2.3 years ± 1.9 years) were randomly assigned to receive either 60 g of whey protein concentrate, or the same amount of protein in form of a 70:30 blend of pea and rice protein concentrates (Veg), either alone or alonside the enzyme blend Digest-All® VP in a double-blind, crossover study. All supplements were provided on an empty stomach after a 12 hour overnight fast. The three testing sessions, in which blood was drawn immediately prior to, and at 30 minutes, 1, 2, 3, and 4 hours following consumption of the supplements, were separated by a washout period of 7 days.
    Figure 2: Time to achieve peak amino acid levels and total amount of amino acids that made it to the blood stream with whey protein, the pea + rice mix and the pea + rice mix w/ digestive enzymes (Minevich. 2015).
    Ok, I have to admit that the differences are not exactly staggering and the standard deviations (see error bars) are large, but still. One potentially important determinant of skeletal muscle metabolism, the time it takes for the serum levels of essential amino acids - including leucine - to peak, i.e. T_max in Figure 2, was visibly improved by the addition of digestive enzymes to the otherwise comparatively slow digested rice + pea protein mix (if you look at the error bars, you will see that this was just a "trend", though).

    If you also take into account that the digestive enzyme blend brought the area under the EAA curve (see Figure 2) and the peak amino acid levels (not shown in Figure 2) of the vegetable protein blend up to the same level as it was observed with whey protein, it would seem as if the study would provide the missing evidence of the usefulness of proteases and co. for people who want to make the absolute most of their vegetable protein supplements - what is missing, obviously, is data that would allow us to quantify the downstream effects on muscle gains and other practically relevant study outcomes.
  • High protein + training = WIN?! You will certainly remember the impressive results of Antonio et al.'s 2014 study on the effects of a 4.4g/kg protein diet on the body composition healthy resistance-trained men and women (learn more). Right after said study had been published the authors promised a follow up that would combine a similarly high protein intake with a controlled exercise intervention and... voila! The first results of this study were presented at this year's ISSN meeting.

    For the corresponding experiment, Ellerbroek et al. recruited forty-eight healthy resistance-trained men and women in their early twenties. who consumed either 2.3g/kg body weight per day (NP) or 3.4g/kg body weight per day (HP) of dietary protein during the treatment period. Moreover, all subjects participated in a split-routine, body part heavy resistance-training program. Training and diet (everyday) logs were kept by each subject.
Learn everything about the previous study.
Don't worry! I am going to write a full review of this study as soon as it will be published. In theory I would have had to skip it just like the other studies, but since I would have been mad at me if for doing that if I were you, I decided to give summarize the little information you can find in the abstract. Against that background I hope you will understand that I will refrain from making any definite conclusions until I've read the full-text. The abstract does after all lack a lot of potentially relevant information, such as the type of workouts, the way the subjects achieved the increase in protein intake (dietary or supplemental protein), the adherence, actual protein, carb & fat intakes, etc.
  • As the scientists point out in the results section of the abstract, their two-time point (Pre, Post) by two-group (NP, HP) repeated-measures analysis of variance (ANOVA) showed (a) significant time by group (p ≤ 0.05) changes in body weight with weight gains and loss in the normal and high protein groups, respectively (1.3 ± 1.3 kg NP, -0.7 ± 4.0 HP), as well as reductions in total and relative body fat in both groups (-0.3 ± 2.2 kg NP, -1.7 ± 2.3 HP), and % BF (-0.7 ± 2.8 NP, -2.4 ± 2.9 HP) - both as you can see in Figure 3 with significant advantages for the HP group.
    Figure 3: Changes in body weight, fat and fat free mass in the normal and high protein groups during the diet + training intervention; mind the error bars = high inter-individual differences (Ellerbroek. 2015).
    In the absence of any form of ill health effects due to the high protein intake (both groups consumed significantly more than the recommended daily allowance of 0.8g/kg), Ellerbroek et al. also found a significant time effect for the increase in fat-free mass  (1.5 ± 1.8 NP, 1.5 ± 2.2 HP), 1-RM on the bench and squats and vertical jump and pull-up performance - albeit without significant diet-induced inter-group differences.
So what's not in this issue? Poster presentations I decided not to discuss "at length" in this issue are the allegedly interesting presentation by Galvan et al. on the "[e]ffects of 28 days of two creatine nitrate based dietary supplements on bench press power in recreationally active males." Just as it was the case for the previously referenced studies on BCAAs, I'd rather wait for the full-text to be published before I make up my mind on whether creatine nitrate is the first form of "advanced creatines" that's actually worth it's money (unlike the rest of the pack | Jäger. 2011).

Blocking Inflammation is Like Cho- king the Fire: Long Term Weight-, Visceral- and Android-Fat Gain in Human Study Emphasizes Essential Role of TNF-α in Metabolic Control!
The same must be said of a study by Detzel, et al. (2015) in which the researchers compared the effects of functional animal proteins on mTOR and endotoxins like , pro-inflammatory compounds, that arise as a consequence of intense training. There's no debating: The way serum the derived protein supplements (BioBeef, SerumPro, and SuperSerum) were capable of neutralizing endotoxin is is interesting, but to comment on the practical usefulness of blending of high-quality protein sources with functional serum protein supplements (SuperSerum and SerumPro) the abstract that does not provide numbers to assess the relevance of the reductions in IL-8 cytokine production by THP-1 monocytes is simply not sufficient | Comment!
References:
  • Detzel, Christopher J., et al. "Functional animal proteins activate mTOR and bind pro-inflammatory compounds." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P35.
  • Ellerbroek, Anya, et al. "The effects of heavy resistance training and a high protein diet (3.4 g/kg/d) on body composition, exercise performance and indices of health in resistance-trained individuals-a follow-up investigation." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P37.
  • Franklin, Brian, et al. "The effect of meal composition on postprandial glucagon-like peptide-1 response in overweight/obese participants." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P12.
  • Galvan, E., et al. "Effects of 28 days of two creatine nitrate based dietary supplements on bench press power in recreationally active males." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P17.
  • Jäger, Ralf, et al. "Analysis of the efficacy, safety, and regulatory status of novel forms of creatine." Amino Acids 40.5 (2011): 1369-1383.
  • Lejeune, Manuela PGM, et al. "Ghrelin and glucagon-like peptide 1 concentrations, 24-h satiety, and energy and substrate metabolism during a high-protein diet and measured in a respiration chamber." The American journal of clinical nutrition 83.1 (2006): 89-94.
  • Näslund, E., et al. "Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men." International journal of obesity 23.3 (1999): 304-311.
  • Nystrom, M. G., et al. "Nutrient timing habits of Division I NCAA athletes." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P33.
  • Minevich, Julie, et al. "Digestive enzymes reduce quality differences between plant and animal proteins: a double-blind crossover study." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P26.