Tampilkan postingan dengan label resistance training. Tampilkan semua postingan
Tampilkan postingan dengan label resistance training. Tampilkan semua postingan

Sabtu, 23 April 2016

BFR, Detraining Mass & Strength | Multiple Sets Multiply 'Ur EE | 1- vs. 2-Arm Kettle Bell Swings Rock the Core & More

The # of hands you use to hold your KB while doing swings determines core muscle activity.
With the publication of the latest issue of the The Journal of Strength & Conditioning Research (May 2016 - Volume 30 - Issue 5 | read it), the time has come to do a training science update with data on the effects on blood flow restriction on strength and size gains during detraining, the energetic demands of single vs. multi-set training, the highly significant core muscle activity patterns with single- vs. two-arm kettlebell swings and a handful of auxilliary studies summarized in the bottom line... Sounds interesting? Well, then I don't want to keep you any longer. Let's see which insights said studies have to offer...
You can use BFR powered detraining in your periodization schemes.

30% More on the Big Three: Squat, DL, BP!

Mix Things Up to Make Extra-Gains

Linear vs. Undulating Periodizationt

12% Body Fat in 12 Weeks W/ Periodizatoin

Detraining + Periodization - How to?

Tapering 101 - Learn How It's Done!
  • Low intensity blood flow restriction training done during three times per week during 6 weeks of detraining helps maintain mass in in phys. active subjects (Kim. 2016).

    Compared to vigorous cycling at 60–70% of the subjects' individual heart rate reserve [HRR] without BFR, the low-intensity cycling protocol (30% HRR) with BFR (160–180 mm Hg) Kim et al. prescribed to their subjects, thirty-one healthy college-aged males (22.4 ± 3.0 years, range: 19–30 years), actually increased the leg lean mass of the subjects over time.
    Table 1: Strength and body composition data - *LI-BFR = low-intensity cycling with BFR; CON = control; BFLBM = bone-free lean body mass; ES = effect size; VI = vigorousintensity (Kim. 2016)
    The strength development in both groups was identical, though. This and the fact that cycling is not exactly what you should do to maintain strength and size (learn more about detraining) are yet things you have to keep in mind, before freaking out about how "awesome" BFR is.
  • Study unsurprisingly confirms the superior energy requirements of multiple- vs. single-set workouts - Difference is larger than 100%, in young men and women (Mookerjee. 2016).

    In their study, the researchers from the Universities of Pennsylvania and Cumberlands, as well as the College of New Jersey compare energy expenditure (EE) of single-set and multiple-set resistance exercise protocols using indirect calorimetry.
    Table 2: Loads (kg) used for each exercise presented by gender and combined data (Mookerjee. 2016).
    Twelve men and twelve women (age = 21.4 ± 1.3 years) performed a single-set (SS) and multiple-set (MS) resistance exercise protocol in random order. The subjects performed two protocols at 70% of their 1-repetition maximum. The protocols consisted of 5 upper-body exercises of either 1 or 3 sets per exercise performed in random order. Metabolic and cardiorespiratory data were recorded over the entire exercise session and during 5 minutes of recovery by a portable metabolic measurement system.
    Figure 1: Gross and net (left), as well as relative (per lbm) EE in kcal during SS (single set) and MS (multiple set) training in male and female study participants (Mookerjee. 2016).
    As you can see in Figure 1, the gross (167.9 ± 58.7 kcal) and net (88.3 ± 41.6 kcal) EE for the MS protocol were significantly greater (p < 0.001) than gross (71.3 ± 26.5 kcal) and net (36.3 ± 18.7 kcal) EE of the SS protocol. Conversely, there was no significant difference in the rate of EE between both protocols. Heart rate, respiratory rate, relative V[Combining Dot Above]O2, respiratory exchange ratio, and minute ventilation values were significantly higher during the MS than the SS protocol.

    As it was to be expected, a significant gender difference (p < 0.001) in absolute and relative EE was observed for both protocols where values in men were higher than women. 
  • Doing kettle bell swings with one vs. two arms induces a greater neuromuscular activity for the contralateral side of the upper erector spinae and ipsilateral side of the rectus abdominis, and lower activation of the opposite side of the respective muscles (Anderson. 2016).

    The aim of the study of this study from Norway was to compare the electromyographic activity of rectus abdominis, oblique external, and lower and upper erector spinae at both sides of the truncus in 1-armed and 2-armed kettlebell swing. To this ends, the researchers had sixteen healthy men perform 10 repetitions of both exercises using a 16-kg kettlebell in randomized order.
    Figure 2: Comparison of the EMG activity of the core muscles 1- vs. 2-armed kettle bell swings in sixteen healthy men (age, 25 ± 6 years; body mass, 80 ± 8 kg; stature, 180 ± 7 cm) with 7 ± 7 years of resistance training experience (Anderson. 2016)
    As the data in Figure 2 reveals, For the upper erector spinae, the activation of the contralateral side during 1-armed swing was 24% greater than that of the ipsilateral side during 1-armed swing (p < 0.001) and 11% greater during 2-armed swing (p = 0.026). Furthermore, the activation in 2-armed swing was 12–16% greater than for the ipsilateral side in 1-armed swing (p < 0.001). For rectus abdominis, however, 42% lower activation of the contralateral side was observed during 1-armed swing compared with ipsilateral sides during 2-armed swing (p = 0.038) and 48% compared with the ipsilateral side during 1-armed swing (p = 0.044). Comparing the different phases of the swing, most differences in the upper erector spinae were found in the lower parts of the movement, whereas for the rectus abdominis, the differences were found during the hip extension. In contrast, similar muscle activity in the lower erector spinae and external oblique between the different conditions was observed (p = 0.055–0.969). In conclusion, performing the kettlebell swing with 1 arm resulted in greater neuromuscular activity for the contralateral side of the upper erector spinae and ipsilateral side of the rectus abdominis, and lower activation of the opposite side of the respective muscles.
Normalized electromyography (EMG) amplitude values (mean 6 SD) for the straight and hexagonal barbells, collapsed across 65 and 85% 1 repetition maximum loads (Camara. 2016) |  ++ significant advantage of regular bar; + significant advantage of hexagnoal bar.
What else have we got? Well, there are Trexel's previously discussed popular creatine vs. caffeine study discussed in July 2015 (read more) and Ohya's 400- and 800-m track running study showing that even trained females' performance suffers from inspiratory muscle fatigue after short-duration running exercise, suggesting that "[c]oaches could consider prescribing inspiratory muscle training or warm-up in an effort to reduce the inevitable IMF associated with maximal effort running" (Ohya. 2016).

Furthermore, Camara's previously (only in the Facebook news) discussed study showing differences in the muscle activity pattens (data see Figure on the right) and significantly greater peak force, peak power, and peak velocity for deadlifts with hexoganal vs. regular bars, and, last but not least has now been officially published.

Last, but not least, Beyer's study showing that 4 weeks of unilateral strength training results in "an increase in strength and size of the trained musculature, and cross education of strength in the untrained musculature, which may occur without detectable changes in muscle size, activation, or the acute hormonal response" (Beyer. 2016) as well as two studies I will discuss in detail, next week, should not be forgotten either | Comment on Facebook!.
References:
  • Andersen, V, Fimland, MS, Gunnarskog, A, Jungård, G-A, Slåttland, R-A, Vraalsen, ØF, and Saeterbakken, AH. Core muscle activation in one-armed and two-armed kettlebell swing. J Strength Cond Res 30(5): 1196–1204, 2016
  • Camara, KD, Coburn, JW, Dunnick, DD, Brown, LE, Galpin, AJ, and Costa, PB. An examination of muscle activation and power characteristics while performing the deadlift exercise with straight and hexagonal barbells. J Strength Cond Res 30(5): 1183–1188, 2016
  • Kim, D, Singh, H, Loenneke, JP, Thiebaud, RS, Fahs, CA, Rossow, LM, Young, K, Seo, D-i, Bemben, DA, and Bemben, MG. Comparative effects of vigorous-intensity and low-intensity blood flow restricted cycle training and detraining on muscle mass, strength, and aerobic capacity. J Strength Cond Res 30(5): 1453–1461, 2016
  • Mookerjee, S, Welikonich, MJ, and Ratamess, NA. Comparison of energy expenditure during single-set vs. multiple-set resistance exercise. J Strength Cond Res 30(5): 1447–1452, 2016
  • Ohya, T, Yamanaka, R, Hagiwara, M, Oriishi, M, and Suzuki, Y. The 400- and 800-m track running induces inspiratory muscle fatigue in trained female middle-distance runners. J Strength Cond Res 30(5): 1433–1437, 2016.
  • Trexler, ET, Smith-Ryan, AE, Roelofs, EJ, Hirsch, KR, Persky, AM, and Mock, MG. Effects of coffee and caffeine anhydrous intake during creatine loading. J Strength Cond Res 30(5): 1438–1446, 2016

Jumat, 01 April 2016

Cardio Can BOOST Your Gains?! Do it Before Weights and be Rewarded With 28% Increased Fiber Size & VO2 Gains

It may be important that the subjects cycled, because a recent review of the potential interference of cardio w/ strength training shows that cycling is the least likely to affect your gains (Murach. 2016).
In previous articles at the SuppVersity, I have written about the still ubiquitous concern that cardio training (or aerobic training, in general) could hamper your size and strength gains - a fear that is, unless you overdo it, unwarranted (learn more about HIIT"regular" cardio training).

Now, a recent study from the Mid Sweden University shows that the opposite could be the case, i.e. that the hypertrophy response to exercise can actually be stimulated by combining resistance training not just with "cardio", but with "cardio" (=continuous cycling) and HIIT - at least if it's done not after, but before resistance training.
Are you looking for muscle builders for the year 2016? Find inspiration in these articles:

Tri- or Multi-Set Training for Body Recomp.?

1, 2, or 5 sets per Exercise? What's "best"?

Pre-Exhaustion Exhausts Your Growth Potential

Full ROM ➯ Full Gains - Form Counts!

Battle the Rope to Get Ripped & Strong

Study Indicates Cut the Volume Make the Gains!
The authors of the study, Zuzanna Kazior, Sarah J. Willis, Marcus Moberg, William Apró, José A. L. Calbet, Hans-Christer Holmberg, andn Eva Blomstrand were (just like you?) unhappy with the contradictory outcomes of existing studies on the effect of endurance exercise on the anabolic response to strength training. Accordingly, they designed a study to "re-investigated this issue, focusing on training effects on indicators of protein synthesis and degradation" (Kazior. 2016).

Figure 1: Overview of the resistance (top) and cardio training (bottom) protocols in the study at hand (Kazior. 2016).
In said study, two groups of previously not regularly trained male subjects performed 7 weeks of resistance exercise alone (R; n = 7) or in combination with preceding endurance exercise, including both continuous and interval cycling (ER; n = 9). You can see the exact protocols in Figure 1, with the resistance training part being on the top and the endurance / HIIT part on the bottom (the number of training sessions in the ER and R group were identical; importantly, the endurance training was performed before the resistance training and included an extra 5-min warm-up + cool-down before and after the E-part.
Did carbohydrates make the difference? Within 20 min after completion of a training session, subjects in the R-group received a protein supplement (Kolozzeum Pure Whey, Stockholm, Sweden), 20 g dissolved in 500 ml of water to enhance muscle recovery. The ER-group were given this same supplement, but with addition of maltodextrin (Fairing Fast Carbs, Järfälla, Sweden) in an amount corresponding to the individual´s calculated energy expenditure during the endurance training - did the maltodextrin make a difference? Based on the results of previous studies, this seems very unlikely. While carbs alone can enhance the protein synthetic response to resistance training (Børsheim. 2004), studies show no benefit of adding it to a sufficient amount of protein that is consumed right after resistance training workouts (Koopmann. 2007). 
Biopsies were taken from the lateral part of m. quadriceps, i.e., the vastus lateralis, both before and after 7 weeks of training. To ensure the results were not messed up, ...
"[t]he subjects were instructed to refrain from training for 2 days prior to the pre-training biopsies and the post-training biopsies were taken approximately 2 to 3 days after the final session in 15 subjects, but in one subject the post-training biopsy was taken 90 hours after the final session. During this period the subjects also refrained from training" (Kazior. 2016).
All data are expressed as means ± SD and were checked for normal distribution before performing parametric statistical analyses. A two-way repeated measures ANOVA (time, group) was applied to evaluate and compare the effect of training in the R and ER groups. When the ANOVA showed a significant main effect or interaction between time and group, Fisher’s LSD post hoc test was applied to identify where the differences occurred. A P-value <0.05 was considered to be statistically significant.
Figure 2: Levels of proteins in the Akt signaling pathway before and after 7 weeks of training. (A) Akt, (B) mTOR and (C) S6K1 in skeletal muscle before (Pre) and after (Post) 7 weeks of strength training only (R) or combined endurance and resistance exercise (ER). Representative immunoblots from two subjects. *P < 0.05 for Post vs. Pre (Kazior. 2016).
While similar increases in leg-press 1 repetition maximum (30%; P<0.05) were observed in both groups, irrespective of the maximal muscle gains - a discrepancy of which the scientists say that it "suggests that the improvement in maximal strength (1RM) observed following our relatively short 7-week period of training is due largely to neuromuscular adaptation" (Kazior. 2016), the scientists observed a striking and highly significant difference between the changes of the subject's maximal oxygen uptake (a marker of cardiovascular fitness) in the two groups. As you may already have expected, the latter was elevated (8%; P<0.05) only in the ER group, while the strength training only group saw no increase in this important fitness marker.
Figure 3: Pre- vs. post changes in fiber are and capillary density in both groups (Kazior. 2016).
And what about the gains? As far as those were concerned, Kazior et al. observed significantly larger increases in the ER training group as well. More specifically, the ER group saw gains in both, the areas of both type I and type II fibers. The R protocol, on the other hand, increased only the area of the type II fibers, which is why it is not exactly surprising that the mean fiber area increased by 28% (P<0.05) in the ER group, whereas no significant increase was observed in the R group - a difference that appears to be in line with the expression of the anabolic proteins Akt and mTOR, which were both enhanced in the ER group, whereas only the level of mTOR was elevated following R training. The scientists further analyses showed that...
"[the t]raining-induced alterations in the levels of both Akt and mTOR [both anabolic] protein were correlated to changes in type I fiber area (r = 0.55–0.61, P<0.05), as well as mean fiber area (r = 0.55–0.61, P<0.05), reflecting the important role played by these proteins in connection with muscle hypertrophy. Both training regimes reduced the level of MAFbx protein (P<0.05) and tended to elevate that of MuRF-1 [both catabolic]" (Kazior. 2016).
In view of these findings, it is only logical that the authors conclude that "the present findings indicate that the larger hypertrophy observed in the ER group is due more to pronounced stimulation of anabolic rather than inhibition of catabolic processes" (Kazio. 2016) - irrespective of the fact that they cannot tell for sure what it was that triggered these practically relevant differences.
Can the increase in IGF1, GH and testosterone as it was observed W/ Cardio first by Rosa et al. (2014) explain the increased size gains?
So what's going on, here? While you may expect that the addition of carbohydrates after the workout in the ER group could have something to do with the increased size gains, the data discussed in the red box shows that this is relatively unlikely (even though it could be the reason why AKT increased only in the ER group).

As far as the reasons for the surprising differences to other studies are concerned, we are thus left with two options: (1) the cardio protocol with steady state + HIIT could be special, or (2) doing cardio before not after strength training could be special. Interestingly enough, I've written about potential anabolic benefits of doing your cardio before weights, before: In a 2014 study, Rosa et al. observed significant increases in the purportedly muscle building hormones GH, IGF1 and testosterone when cardio was done before weights.

Whether it's in fact a pro-anabolic response to reversing the more common order of resistance training > cardio to cardio > resistance training does yet seem questionable - irrespective of the fact that the acute GH response was in fact one out of two parameters of which West et al. have found that it correlates with the actual muscle gains in their seminal 2012 study (discussed here) | Maybe you've got better explanations? If so, leave them in a comment on Facebook!
References:
  • Børsheim, Elisabet, et al. "Effect of carbohydrate intake on net muscle protein synthesis during recovery from resistance exercise." Journal of Applied Physiology 96.2 (2004): 674-678.
  • Kazior Z, Willis SJ, Moberg M, Apró W, Calbet JAL, Holmberg H-C, et al. "Endurance Exercise Enhances the Effect of Strength Training on Muscle Fiber Size and Protein Expression of Akt and mTOR." PLoS ONE 11.2 (2016) : e0149082. doi:10.1371/journal.pone.0149082
  • Koopman, René, et al. "Coingestion of carbohydrate with protein does not further augment postexercise muscle protein synthesis." American Journal of Physiology-Endocrinology and Metabolism 293.3 (2007): E833-E842.
  • Murach, Kevin A., and James R. Bagley. "Skeletal Muscle Hypertrophy with Concurrent Exercise Training: Contrary Evidence for an Interference Effect." Sports Medicine (2016): 1-11.
  • Rosa C, Vilaça-Alves J, Fernandes HM, Saavedra FJ, Pinto RS, Machado Dos Reis V. "Order effects of combined strength and endurance training on testosterone, cortisol, growth hormone and IGFBP-3 in concurrent-trained men". J Strength Cond Res. (2014): Jul 15 Ahead of Print. 
  • West, Daniel WD, and Stuart M. Phillips. "Associations of exercise-induced hormone profiles and gains in strength and hypertrophy in a large cohort after weight training." European journal of applied physiology 112.7 (2012): 2693-2702.

Jumat, 26 Februari 2016

Mo, We, Fr - Sequence of Hypertrophy, Power & Strength Will Up Your Gains on the Big Three (Squat, Bench, Deadlift)

Squat, bench press, deadlift - All major three benefit from the right order in your daily undulating periodization program (DUP) - This is how it works...
As a SuppVersity reader you are familiar with the term "undulating periodization". In contrast to regular periodization schemes, undulating schemes will have you train in different rep ranges on a weekly or - as in the latest study by Zourdos et al. (2016), even daily (as in every workout) basis.

As Zourdos, et al. point out, the available research shows mixed results with the respect to the efficacy of regular linear vs. undulating periodization schemes. While some studies report no differences among training models (Baker. 1994; Buford. 2007; Kok. 2009), others suggest that the more frequent changes of the rep ranges in an undulating periodization scheme are more advantageous for strength development (Miranda. 2011; Monteiro. 2009; Peterson. 2008; Prestes. 2009; Rhea. 2002).
The method used int he study is an alternative to classic periodization schemes.

30% More on the Big Three: Squat, DL, BP!

Mix Things Up to Make Extra-Gains

Linear vs. Undulating Periodizationt

12% Body Fat in 12 Weeks W/ Periodizatoin

Detraining + Periodization - How to?

Tapering 101 - Learn How It's Done!
When you take a closer look at the data, one of the potential confounding factors that emerges is the subjects' training experience with no significantly distinct advantages in untrained or recreationally trained individuals (Baker. 1994; Buford. 2007; Herrick. 1999; Kok. 2009) and a significantly greater degree of muscular strength development when using a DUP design compared with LP (Miranda. 2011; Monteiro. 2009; Peterson. 2008; Prestes. 2009; Rhea. 2002). An alternative difference, the effects of which have not been investigated yet, are programming variations within the daily undulating periodization (DUP) framework in experienced athletes. More specifically, ...
"[i]t is reasonable to speculate that the program design and practical implementation of DUP can be further optimized. A possible area of improvement in the DUP design is the temporal configuration of hypertrophy-centric, strength-centric, and power/speedcentric sessions within a given week. Previous research demonstrating the effectiveness of DUP over LP implemented a weekly training order of hypertrophy-centric, strength-centric, and power-centric bouts (e.g., hypertrophy training on Monday, strength training on Wednesday, and power training on Friday) (Peterson. 2008). However, this design calls for a strength-centric bout to be performed just 48–72 hours after a hypertrophy-centric bout each week. Hypertrophy training is characterized by sessions of high volume of exercise, a condition shown to result in heightened muscle damage, and compromised neuromuscular performance for up to 48-hour postexercise (Flann. 2011; Rhea. 2002b). In the context of traditional DUP formatting, this may conceivably hinder performance (i.e., total volume [TV] performed) during the subsequent strength-centric bout, thereby precluding strength athletes from maximizing their training potential" (Zourdos. 2016).
To investigate the potential negative effects of hypertrophy training induced muscle damage on the subsequent strength training bout, Zourdos et al. (2016) compared the effects of a modified DUP format with a weekly training order of hypertrophy-centric (H), power-centric (P), and strength-centric bouts (S | H-P-S) on total training volume (i.e., sets 3 reps 3 weightlifted) and muscular strength in comparison with a traditional DUP model (i.e., HSP) in resistance-trained men for 6 weeks (see Figure 1).
Table 1: Experimental training periodization - Traditional Daily Undulating Periodization (DUP) involves a weekly training order of hypertrophy, strength, and then power focused bouts (HSP). Modified DUP involves a weekly training order of hypertrophy, power, and then strength focused bouts. Each protocol spans 6 weeks and consists of three exercises: back squat, bench press, and deadlift (only performed during strength-centric bouts | Zourdos. 2016).
In order to find out what could be responsible for any potentially observable differences in their study, the authors also tested the total training volume as measured by the total poundage the subjects moved during the strength sessions, in which the subjects trained to failure, and the temporal secretion patterns of testosterone and cortisol in response to both DUP training programs.
Understanding the benefits: Since I've already received questions about how the benefits came about, let me briefly elaborate on the idea of HPS vs. HSP. The notion was that <48h of recovery, from Monday to Wednesday, after a higher volume hypertophy (H) training program would not be enough to hit personal bests on the strength day on which - and that's important - the subjects had to perform each set to full failure. If you train to failure, recovery is a crucial determinant of the number of reps you will master and thus the total volume. The latter, in turn, appears to be one of the central determinants of the strength / hypertrophy response to resistance training, which in turn makes you stronger and will allow you to lift even more weight. So, postponing the strength (S) day to Friday instead of Wednesday will have both, direct and indirect beneficial effects on your gains.
In that, Zourdos, et al. hypothesized that "HPS (i.e., modified DUP) would yield greater volume and strength gains in the 3 exercises performed during training" (Zourdos. 2016).
Figure 1: Rel. change in strength and abs. Cohen’s d effect size in HSP and HPS groups (N = 9 for both; Zourdos. 2016).
As you can see in Figure 1, the scientists were right, the effects of the otherwise identical training protocols, which involved 3 exercises (squats + bench presses in every, deadlifts only in the strength sessions) during training, of which the subjects did ..
  • 5 sets of 8 reps at 75% 1RM during H = hypertrophy,
  • 5 sets of 1 rep at 80%-90% increased every 2 weeks during P = power and
  • 3 sets to failure at 85% during S = strength raining
differed significantly, with a statistical significant advantage on the bench and meaningfully higher effect sizes for all three exercises in the HPS group - an effect that could be mediated by the increased total volume and Wilk's coefficient, a measure that can be used to measure the strength of a powerlifter against other powerlifters despite the different weights of the lifters (see Figure 2).
Figure 2: Rel. change in powerlifting volume and Will's coefficient + effect sizes in HSP and HPS groups (Zourdos. 2016).
An alternative explanation of which previous studies do yet not confirm that it may explain the difference is the differential cortisol / testosterone response (learn more) - in view of the fact that the difference you see in Table 2 is not statistically significant, though, it is even more unlikely that the meager difference in testosterone and cortisol the scientists observed had any effect.
Table 1: Pre- and post-training serum testosterone and cortisol level (Zourdos. 2016).
Against that background, we're back to the "usual" subject, when it comes to determinants of the degree of adaptation to resistance training: volume - the same parameter reviews and studies by Schoenfeld et al. (2010; 2011; 2014) have previously singled out as the (most important) determinant of training success.
Again: The differences in the cortisol / testosterone levels were not just statistically non-significant. At least the latter has also been shown to have no effect on your gains, anyways | more.
Bottom line: As the authors point out, "[t]hese findings demonstrate 2 important factors in accordance with the previous literature: (a). Total training volume seems to be a determinant of increased strength performance, and (b). Daily undulating periodization is an effective model to
enhance 1RM strength during short-term training protocols in well-trained men" (Zourdos. 2016).

Zourdos et al. are yet also right to point out that few training studies exist regarding various training designs. This alone warrants further "research examining further DUP configurations is necessary" - studies in less trained individuals, and studies investigating the size gains, too could after all both yield different results for the same H-S-P to H-P-S comparison | Comment on Facebook!
References:
  • Baker, Daniel, Greg Wilson, and Robert Carlyon. "Periodization: The Effect on Strength of Manipulating Volume and Intensity." The Journal of Strength & Conditioning Research 8.4 (1994): 235-242.
  • Buford, Thomas W., et al. "A comparison of periodization models during nine weeks with equated volume and intensity for strength." The Journal of Strength & Conditioning Research 21.4 (2007): 1245-1250.
  • Flann, Kyle L., et al. "Muscle damage and muscle remodeling: no pain, no gain?." The Journal of experimental biology 214.4 (2011): 674-679.
  • Herrick, Andrew B., and William J. Stone. "The Effects of Periodization Versus Progressive Resistance Exercise on Upper and Lower Body Strength in Women." The Journal of Strength & Conditioning Research 10.2 (1996): 72-76.
  • Kok, Lian-Yee, Peter W. Hamer, and David J. Bishop. "Enhancing muscular qualities in untrained women: linear versus undulating periodization." Med Sci Sports Exerc 41.9 (2009): 1797-807.
  • Miranda, Fabrício, et al. "Effects of linear vs. daily undulatory periodized resistance training on maximal and submaximal strength gains." The Journal of Strength & Conditioning Research 25.7 (2011): 1824-1830.
  • Monteiro, Artur G., et al. "Nonlinear periodization maximizes strength gains in split resistance training routines." The Journal of Strength & Conditioning Research 23.4 (2009): 1321-1326.
  • Peterson, Mark D., et al. "Undulation training for development of hierarchical fitness and improved firefighter job performance." The Journal of Strength & Conditioning Research 22.5 (2008): 1683-1695.
  • Prestes, Jonato, et al. "Comparison of linear and reverse linear periodization effects on maximal strength and body composition." The Journal of Strength & Conditioning Research 23.1 (2009): 266-274.
  • Rhea, Matthew R., et al. "A comparison of linear and daily undulating periodized programs with equated volume and intensity for strength." The Journal of Strength & Conditioning Research 16.2 (2002a): 250-255.
  • Rhea, Matthew R., et al. "Three sets of weight training superior to 1 set with equal intensity for eliciting strength." The Journal of Strength & Conditioning Research 16.4 (2002b): 525-529.
  • Schoenfeld, Brad J. "The mechanisms of muscle hypertrophy and their application to resistance training." The Journal of Strength & Conditioning Research 24.10 (2010): 2857-2872.
  • Schoenfeld, Brad. "The use of specialized training techniques to maximize muscle hypertrophy." Strength & Conditioning Journal 33.4 (2011): 60-65.
  • Schoenfeld, Brad J., et al. "Effects of different volume-equated resistance training loading strategies on muscular adaptations in well-trained men." The Journal of Strength & Conditioning Research 28.10 (2014): 2909-2918.

Kamis, 24 Desember 2015

Hormonal Response to Exercise, Revisited: A Consequence, not a Determinant of Your Mood, Effort & Performance

Studies in men suggest no effect of the hormonal response on training outcome - What about women? A news study provides insights that may be relevant for both female and male gymrats.
It has been a few years that I last wrote about the "hormonal ghost". Back in the day, Stuart M. Phillips published an excellent paper that debunked the myth of a mechanistic link of post-exercise increases in testosterone, growth hormone, IGF-1 and co., on the one hand, and exercise-induced strength and size gains, on the other hand. And for those for whom Phillip's review of the literature was not convincing enough, Daniel WD West's 2012, which showed none of the expected associations between exercise-induced hormone profiles (first and foremost higher post-workout testosterone levels) and the rate or significance of muscle strength and size gains in a large cohort of young men after weight training, should have been evidence enough to stop believing in "hormonal ghosts", but alas... you will probably know that "training for testosterone increases" is still en vogue.
Learn more about building muscle and strength at www.suppversity.com

Tri- or Multi-Set Training for Body Recomp.?

Alternating Squat & Blood Pressure - Productive?

Pre-Exhaustion Exhausts Your Growth Potential

Exercise not Intensity Variation for Max. Gains

Battle the Rope to Get Ripped & Strong

Study Indicates Cut the Volume Make the Gains!
That's stupid stubbornness, nothing else, right? Well, even though I don't believe in ghosts, I have to admit that a closer look at West's data will have you reject the hypothesis that the post-workout testosterone response would augment size gains, it does yet also show other hormonal changes do correlate with the changes in the study's subjects' lean mass (Figure 1, left) as well as type I (middle) and type II fiber size increases (Figure 1, middle & right).
Figure 1: Sign. associations between PWO hormone levels and lean mass, as well as fiber size increases (West. 2012).
As you can see in Figure 1, this was the case for the cortisol response and the lean mass gains and the growth hormone (GH) response and the increases in type I ('endurance') and type II ('strength') fiber size. Even though I don't believe that more than 1% of the gymrats world-wide who still believe that maximizing the post-workout "anabolic response" would help them to maximize their gains even know about these results, you could argue that these correlations fuel their beliefs - even if that's paradoxical, because - in bro-scientific terms - you'd have to maximize the catabolic response, i.e. the increase in cortisol (which could by the way simply be a measure of training intensity) in order to maximize the overall gains in muscle size, but alas...
Figure 2: Changes in anabolic and catabolic hormones in response to AM and PM HIIT and RT training (Toon. 2015).
In a series of experiments Rebecca Toone conducted for her thesis, she re-addressed the issue of the acute hormonal effects on performance with female study participants (yes, a long-term study was not part of her thesis, but I promise, the results are still noteworthy).
Higher sprint cadence (RPM) during HIIT, higher increase in DHT in the female study participants (Toon. 2015).
DHT another acute phase reactant? Even though the overall results of the study suggest that increased pre- vs. post workout changes in DHT as Toone observed the with higher RPM-numbers during HIIT sprints are not the reason, but rather the consequences of training at higher intensities, it is worth mentioning that this is the first study to observe the existence of an association between DHT and HIIT performance in women and that the results are in line with the results of previous research suggesting that DHT, not its precursor, testosterone, has a direct influence on skeletal muscle force production in vitro. 
After some preliminary testing, Toone began with another of the infamous "AM vs. PM" workout studies in which she unsurprisingly confirmed that...
"[...] it could be beneficial to perform resistance training in the afternoon preceded by interval exercise in the morning in order to stimulate a hormonal milieu that may be more conducive to stimulating muscle protein turnover" (Toon. 2015). 
If you scrutinize the data in Figure 2, you can see that this hypothesis is warranted, because of the differential response of the anabolic hormones, testosterone and IGF-1, and the stress / catabolic hormones, cortisol and prolactin, she observed in her young female subjects. Against that background it is quite interesting that Toone's last and most important experiment, in which she investigating the potential acute effects of hormones on performance, failed to demonstrate a direct correlation between changes in testosterone or other "anabolic" hormones and her subjects' performance.
"The trial consisted of a 20 min effort at a target power of 80% of the average power obtained during the maximal 20 min TT, followed by a 5 min break, before completion of a bout of repeated sprint interval cycle exercise consisting of 10 x 30 s sprinting, with 90 s recovery. The session was self-paced with real-time numerical feedback provided on elapsed time, cadence and power. Participants were given verbal encouragement at specific time-points throughout the trial. The same protocol was repeated for the second main trial one week later. Participants were permitted to drink water ad libitum throughout the trials. Trials were completed in a group setting as a group of six and a group of eight. A trial timeline schematic is displayed [in Figure 3]" (Toon. 2015).
Instead, the results of the previously described exercise test point towards affective variables, i.e. mood and effort, as the factors that mediate any link between hormonal changes and performance markers during an acute bout of high intensity cycling.
Figure 3: Design of the last and most important experiment of the study (Toone. 2015).
And guess what, the effort Toone's subjects invested into their workouts was not just a predictor of their performance, it was also positively associated with the percent change in testosterone concentration from post-sprint 4 to post-exercise (r = 0.449; P < 0.01).
Note: We are till talking about associations and correlations. That one of these, e.g. the one between the effort we put into our workouts and the preformance and hormonal response exists because of a causal link is thus in view of the results of the study at hand logical, but still hypothetical. As I am about to point out in the bottom line, future studies will have to investigate that - even though I have to admit that it will be difficult to develop an effective design for these studies.
In conjunction with the subjects' affect, which was inversely correlated with the rate of perceived exertion, which in turn showed positive correlations with cortisol, the results highlight a previously overlooked role of effort and affect when it comes to both, exercise performance and its effect on certain hormones.
Figure 4: The hormonal response is rather the consequence than the trigger of acute performance.
Or as Toone has it in her interpretation of these somewhat surprising results: The acute short-term effects of hormone concentrations on performance may be more related to mood and behaviour" than the actual type / time of exercise in the context of her study.
What does that mean? Practically speaking this would confirm what I have said about the initially cited West study in several previous SuppVersity articles. In said study, cortisol probably has no mechanistic effect on muscle size. Rather than that, the increase in cortisol could serve as a measure of how much effort the subjects put into their workouts; and this, in turn, determined their muscle gains (more effort = bigger growth stimulus = greater gains).

The meager and transient increase in testosterone after your workouts has none of the muscle building and fat shedding effects of exogenous testosterone. The latter however, can turn back the time and an aging pouch into a true best-ager | learn more.
In the study at hand, the situation appears to be similar. Mood and effort determine performance and hormonal response of the female study participants. Accordingly, there may be associations between exercise performance and certain hormones, but those are of corollary, not causative nature. In the absence of an additional experiment that would investigate the correlations and associations between mood, effort, RPE, hormones and the exercise-induced adaptation in the long run, we can still only speculate that making the workouts more fun and stimulating maximal effort would promote both, the adaptive response and the hormonal response and thus confirm that mood and effort are in fact the most relevant determinants of the outcome of your workouts | Comment!
References:
  • Phillips, Stuart M. "Strength and hypertrophy with resistance training: chasing a hormonal ghost." European journal of applied physiology 112.5 (2012): 1981-1983.
  • Toone, Rebecca. Assessing the Hormone Response to High Intensity Exercise and Identifying Associations with Performance. Diss. University of Bath, 2015.
  • West, Daniel WD, and Stuart M. Phillips. "Associations of exercise-induced hormone profiles and gains in strength and hypertrophy in a large cohort after weight training." European journal of applied physiology 112.7 (2012): 2693-2702.

Minggu, 13 Desember 2015

True or False: Adolescent Athletes at Risk of High Tendon Stress due to Non-Uniform Tendon/Muscle Adaptation

Not allowing young athletes to lift weights may in fact increase, not decrease, their injury risk and hamper their recovery.
I am not sure why, but people won't stop inventing new reasons why professional athleticism would be bad for adolescents. One of the more recently heard claims is that early resistance training will lead to a "non-uniform adaptation of muscle and tendon in young athletes" that may "result[] in increased tendon stress during mid-adolescence" (Mersmann. 2015).

In a recent longitudinal study Mersmann et al. investigated the development of the morphological and mechanical properties of muscle and tendon of volleyball athletes in a time period of 2 years from mid-adolescence to late adolescence and the results are quite unambiguous.
Read previous True or False!? Articles at the SuppVersity

You Cannot Consume too Much Whey?!

Caffeine and Creatine Don't Mix, do They?!

Creatine is Better Taken After Workouts!?

Low Fat for Lean, Low Carb for Fat Individuals!?

Protein Timing Really Doesn't Matter!?

Nicotine Gums Will Help Fat Loss!?
A total of eighteen elite volleyball athletes participated in magnetic resonance imaging and ultrasound-dynamometry sessions to determine quadriceps femoris muscle strength, vastus lateralis, medialis and intermedius morphology, and patellar tendon mechanical and morphological properties in mid-adolescence (16 ± 1 years) and late adolescence (18 ± 1 years).
Figure 1: Mean values ± standard deviation of the muscle volume of volleyball athletes in mid-adolescence and late adolescence; %-ages indicate relative mid-to-late differences (Mersmann. 2015).
As the data in Figures 1 and 2 indicates, the muscle strength, anatomical cross-sectional area (CSA), and volume showed significant (P < 0.05) but only moderate increases of 13%, 6%, and 6%, respectively. In contrast to the muscular development, the patellar tendon CSA (P < 0.05) which is under constant stress in (semi-)professional volleyball players showed a substantially higher degree of hypertrophy (27%) that wen in line with increased stiffness (P < 0.05; 25%) and reduced stress (P < 0.05; 9%). Accordingly, the scientists conclude that - in contrast to the commonly heard prejudice - exercise during early adolescence will lead to
"pronounced hypertrophy of the patellar tendon led to a mechanical strengthening of the tendon in relation to the functional and morphological development of the muscle - [...] adaptive processes [that] may compensate the unfavorable relation of muscle strength and tendon loading capacity in mid-adolescence and might have implications on athletic performance and tendon injury risk" (Mersmann. 2015).
You know what, I can read your minds: "What about resistance training, then?" That's the question that's preying on your mind, right now - right? Well, as one of the more recent reviews says, "there is evidence that resistance training may reduce injury in a young athlete’s chosen sport" (Myer. 2006). The authors of the review point out that ...
Heyna et al. have demonstrated as early as 1982 that young athletes who regularly perform resistance training exercises are not just less likely to be injured, they also recover faster (Hejna. 1982).
"[t]his evidence is based on the beneficial adaptations that occur in bones, ligaments, and tendons following training and is further supported by epidemiologic-based reports. Lehnhard and colleagues were able to significantly reduce injury rates with the addition of a strength training regimen to a male soccer team. [...] Hejna and coworkers reported that young athletes (13-19 years) who included resistance training as part of their exercise regimen demonstrated decreased injuries and recovered from injuries with less time spent in rehabilitation when compared with their teammates" (Myer. 2006).
Similar results have been found specifically for female athletes for whom strength training - especially when performed in theh preseason and as regular part of in-season conditioning - reduced injury risk factors and anterior cruciate ligament injuries significantly.
Figure 2: Mean values ± standard error (bars) of (a) patellar tendon cross-sectional area (CSA) as a function of tendon length (in 10% intervals from proximal to distal; n = 18), (b) tendon force-elongation relationship (obtained from ramp contractions, see 'Methods' section; n = 12), and (c) maximum tendon force and stress (calculated for iMVCs; n = 12) of volleyball athletes in mid-adolescence (white) and late adolescence (black | Mersmann. 2015)
So, what's the verdict, then? The study at hand refutes the general claim that a non-uniform adaptation of muscle and tendon in young athletes may result in increased tendon stress during mid-adolescence. Furthermore the comprehensive overview of the effects of resistance training Myer et al. present in their 2006 review shows that additional "resistance training is not only a relatively safe activity for young athletes but that it may also be useful to reduce injuries during competitive play" (Meyer. 2006). To tell your young athletes to stay away from the gym is thus tantamount to telling them not to care about injury prevention.

As the 2014 International Consensus Statement on Youth Resistance Training in the British Journal of Sports Medicine (Lloyd. 2013) points out, it is yet important that your kids and youthsare following "[a]ppropriately designed resistance training programmes" if you actually want to make sure that they reduce, not increase, sports-related injuries. As such, LLoyd et al. even say that resistance training programs "should be viewed as an essential component of preparatory training programmes for aspiring young athletes" (Llyod. 2013 | my emphasis) | Comment on Facebook!
References:
  • Lloyd, Rhodri S., et al. "Position statement on youth resistance training: the 2014 International Consensus." British journal of sports medicine (2013): bjsports-2013.
  • Mersmann, F., et al. "Muscle and tendon adaptation in adolescent athletes: A longitudinal study." Scandinavian Journal of Medicine & Science in Sports (2015).
  • Myer, Gregory D., and Eric J. Wall. "Resistance training in the young athlete." Operative techniques in sports Medicine 14.3 (2006): 218-230.