Tampilkan postingan dengan label protein supplement. Tampilkan semua postingan
Tampilkan postingan dengan label protein supplement. Tampilkan semua postingan

Senin, 06 Juni 2016

Protein Supps + Synthesis After 'Cardio': Milk (Natural 2:8 Whey:Casein) Protein is Best! Plus: 40g May Be Ideal Dose

Even though the study at hand has been conducted in an endurance training scenario, there's no reason to believe that the superiority of milk protein, the natural mix of whey and casein would be a "cardio-specific" thing. In fact, evidence to the contrary has been discussed previously, here and here.
Whey, casein, soy or the rarely used alternative, milk protein, what's best to kickstart the protein synthetic machinery even after endurance workouts? The absorption kinetics of the different proteins, the effects of which a group of scientists from Japan recently re-assessed would suggest that the answer is clear: whey protein, it's the fastest of the four proteins, contains the highest amount of BCAAs (esp. the mTOR- and MPS promoter leucine) content and has been repeatedly shown to rapidly cause significant hyperamonoacidemia (=extremely elevated amino acid levels in the blood | Boirie. 1997; Dangin. 2001; Norton. 2009).

In spite of the fact that whey is also the most insulinogenic of these proteins, it is yet also the one that has been shown to "maximize" amino acid oxidation, thereby contributing to a reduction in nitrogen retention (Boirie. 1997; Dangin. 2001). On the other hand, ingestion of CA causes slower but prolonged aminoacidemia and it has the best leucine net balance during the postprandial period (Boirie. 1997; Dangin. 2001), I've discussed in previous articles, such as "Protein Wheysting".
This is not an anti-high-protein article. It is one arguing in favor of "treating your protein right"

Practical Protein Oxidation 101

5x More Than the FDA Allows!

More Protein ≠ More Satiety

Protein Oxidation = Health Threat

Protein Timing DOES Matter!

More Protein = More Liver Fat?
This is where micellar casein (not sodium or calcium caseinate which are fast-, but slower-than-whey-absorbing "damaged" forms of casein, though) comes in. While casein does not produce the same rapid increase in serum amino acid levels it has been shown to cause moderate but prolonged muscle protein synthesis - the exact opposite of whey protein.
Figure 1: Fractional myofibrillar protein synthesis (A), plasma leucine (B) and plasma insulin (C) levels in young men after ingesting 0.3g/kg whey, casein or a protein-free control drink (Reitelseder. 2011)
The data from Reitelseder et al. (2011) illustrates the link between the time course of the myofibrilliar protein synthesis and a protein's digestion speed, the rate of appearance of leucine (Figure 1, B) in the blood and the protein's insulinogenic (Figure 2, C) effects quite nicely. It is thus only logical to assume and has in fact been shown that the co-ingestion of whey and casein, either mixed or as milk protein is superior to soy protein (SP) [22,23], but also to whey alone, even if the latter is "enhanced" with extra BCAAs and glutamine (learn more!)
Figure 2: As a SuppVersity reader you will rememeber that a previous study showed that whey + casein is profoundly more anabolic than whey that is combined with extra BCAAs and glutamine (Kerksick. 2006)
As the Japanese authors of the study at hand point out, these benefits are likely due to casein's ability to "contributes amino acids that have a prolonged protein-synthetic effect across the leg" - or, put more simply: whey pumps up the AA levels fast, so fast that your body gets wasteful; casein, on the other hand, provides them at a rate that's much more suitable for direct incorporation into the muscle.
Whey (open triangles) increases leucine +protein oxidation vs. casein (closed circles) in man (Boirie. 1997).
Thinking about the perfect mix: Wouldn't it make more sense to have more whey right after a workout and reduce the amount of casein? If that's what you are thinking right now, I have to warn you: As previously pointed out, there's a point of diminishing returns, when excess amino acids as you would increase them by increasing the amount of whey are oxidized and end up as "waste", namely ammonia (and after recycling urate) in your system. The increased leucine oxidation with whey (open triangles) vs. casein (filled circles), as it was observed by Boirie et al. 19 years ago in healthy subjects even though the subjects consumed 43g of casein and only 30g of whey to standardize the leucine content, attests to that. Needless to say, testing a 50:50 or even 60:40 ratio would be something for follow-up studies.
Table 1: Amino acids in milk (MP), caseinate (CA), whey (WP) and soy (SP) protein (Kanda. 2016).
What exactly the ideal ratio of whey to casein protein may be will still have to be determined (probably it'll depend on when you take your protein shake), but the 2:8 ratio, meaning 20% whey protein and 80% casein that was used in the study at hand is "nature's standard formula" and thus what your average milk protein will have. A protein, by the way, of which Kanda et al. wanted to confirm in their latest experiment that it "causes a prolonged increase in muscle protein synthesis compared to WP [whey protein]or CA [casein] alone" (Kanda. 2016).

In contrast to "the average" study, the Kanda et al. did so in the presence of an endurance, not a strength or no training stimulus at all and used both, the milk-derived proteins caseinate (CA | faster absorbing, non-micellar form of casein), whey (WP) & milk protein (MP) to soy (SP). You can review the individual amino acid composition of all four in Table 1 on the right and will notice that "technically speaking", i.e. judged based on its BCAA content, soy is the "worst muscle builder", whey the "best".

Time for the convenient, but annoying truth(s)!

Truth #1: It's a rodent study! That's convenient for the scientists, because using rodents is cheap and easy, but annoying for us, because rodents are a good model for humans, but only that - a model - and by no means the best one. Since we cannot switch the subjects, though, we have to live with the fact that the subjects in the study at hand were Sprague-Dawley rats with a bodyweight of approximately 150 g (at least there were many | n = 237) who were subjected to a swimming exercise protocol during which they swam for a whopping 2h.
You should care about postworkout protein synthesis! While previous studies had suggested that the FSR / MPS response to training and supplementation would not, a more recent study I discussed in detail, last week, clearly demonstrates that FSR / MPS does matter. Read it!
Now, where there's shadow, there's also light: The good thing about rodent studies (bad for the rats, though) is, after all, that, much in contrast to humans, rats can be sacrificed after an experiment like that and will thus allow researches to assess the effects of exercise and supplementation with the aforementioned proteins much more accurately than a single or even multiple muscle biopsies.
Table 2: Macronutrient profile of test proteins; milk (MP), caseinate (CA), whey (WP) and soy protein (SP | Kanda. 2016)
That does not fully compensate for truth #2, though, which is that the scientists made the mistake of using caseinate (Fonterra Co-operative Group, Ltd., Auckland, New Zealand), instead of the more expensive and slower/-est digesting (due to its micelle structure, which gels during the digestion process) molecularly intact micellar casein, of which one could expect that it may have postponed the peak in fractional protein synthesis (FSR) that occurred after 120 minutes with the caseinate even more (Figure 3, left).
Figure 3: Time course of the fractional protein synthesis after endurance exercise with all four proteins (left) and corresponding AUC values (~net protein influx, right | Kanda. 2016).
The previous hypothesis is obviously merely speculative and eventually irrelevant. I mean, micellar casein, or not, it is very unlikely that the overall AUC, i.e. the incremental area under the FSR curve and thus the net influx of protein into the muscle, would have been increased to a level that would top that of milk protein (black bar in Figure 3, right), which had a measurable, but not statistically significantly more pronounced effect on the protein influx than any other of the four proteins.
Bottom line: Yes, it's rodents, but eventually the study at hand simply extends previous studies (A, B) in humans, where the combination of whey + casein likewise outperformed the competition...

FSR during dose escalation study; the human equivalent dose (HED) of 3.09g/kg, the 100% dose, in rats is ~0.5g/kg in man and thus ca. 30-50g milk protein, depending on your body weight. (Kanda. 2015)
And when we are talking about "extending the existent research", it may be worth mentioning that the researchers also provide new evidence in regards to the "ceiling" or "muscle full"-effect that occurs when ingesting more protein won't yield any extra increases in protein synthesis. In the study at hand, this effect was reached at a human equivalent dosage of ca. 0.5g per kg body weight (that's the 100% dose in Figure 4) or ~ 40g which is - initially surprisingly - more than the often touted 20-30g (depending on the human study you cite). In view of the 20:80 mix of whey and casein, the lower leucine content and slower absorption of the latter, it is yet actually logical to need more milk protein vs. whey to "reach the ceiling" | Comment!
References:
  • Boirie, Yves, et al. "Slow and fast dietary proteins differently modulate postprandial protein accretion." Proceedings of the National Academy of Sciences 94.26 (1997): 14930-14935.
  • Dangin, Martial, et al. "The digestion rate of protein is an independent regulating factor of postprandial protein retention." American Journal of Physiology-Endocrinology And Metabolism 280.2 (2001): E340-E348.
  • Kanda, Atsushi, et al. "Effects Of Whey, Casein, Or Milk Protein Ingestion On Muscle Protein Synthesis After Endurance Exercise." MEDICINE AND SCIENCE IN SPORTS AND EXERCISE. Vol. 46. No. 5. 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA: LIPPINCOTT WILLIAMS & WILKINS, 2014.
  • Kerksick, Chad M., et al. "The effects of protein and amino acid supplementation on performance and training adaptations during ten weeks of resistance training." The Journal of Strength & Conditioning Research 20.3 (2006): 643-653.
  • Norton, Layne E., et al. "The leucine content of a complete meal directs peak activation but not duration of skeletal muscle protein synthesis and mammalian target of rapamycin signaling in rats." The Journal of nutrition 139.6 (2009): 1103-1109.
  • Reitelseder, Søren, et al. "Whey and casein labeled with L-[1-13C] leucine and muscle protein synthesis: effect of resistance exercise and protein ingestion." American Journal of Physiology-Endocrinology and Metabolism 300.1 (2011): E231-E242.

Kamis, 04 Februari 2016

Minimal Amounts of Fish Peptide Hydrolysate Double Fat Loss Compared to Whey Isolate on Energy Restricted Diet

I certainly recommend eating fish. Whether I will be recommending fish hydrolysate supplements in the future, however, will have to be determined when additional studies with different baseline diets will have been published.
You may remember that I've written about fish protein hydrolysates / peptides before. Unlike today's article, however, previous articles dealt with the effects of fish protein in rodents. Intrigued by in vitro and animal studies showing that fish-derived peptides demonstrated antihypertensive (Hatanaka. 2009; Kim. 2012; Li. 2012; Ngo. 2011), antioxidant (Nazeer. 2012; Najafian. 2012), immunomodulating effects (Duarte. 2006), reparative properties in the intestine (Fitzgerald. 2005; Marchbank. 2008), and effects in reducing plasma cholesterol and triglycerides levels (Möller. 2008), a group of Italian researchers decided to investigated the effect of Slimpro(R), a supplement containing commercially available fish protein hydrolysate from blue whiting (Micromesistius poutassou), on body composition and on stimulating cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1) secretion in 120, overweight, non-obese (25 kg/m² < BMI < 30 kg/m²), male (25%) and female (75%) subjects aged 18 - 55 year.
Do not underestimate fish as a protein source - fish is more than just omega-3!

Salmon Better Than Whey?

Cod protein for recovery

Krill = Super Protein?

Fish Kicks Casein's Ass

Fast vs. slow protein

5x More Than FDA Allows
Unlike the product that was used may suggest, the study was not sponsored by the supplement company. The authors received neither funding nor other external support and they also declare that they don't have a conflict of interest that may be related to patents or direct involvements in the industry. I guess it's important to point that out, even though fact that the scientists chose whey, i.e. an actually relevant control, instead of carbohydrates or just plain water, may have given away the lack of sponsorship, anyways.

Two weeks before the study started, subjects were asked to fill in an alimentary diary reporting their food preferences. A mild hypocaloric ( 300 kcal/day) diet was elaborated for each subject by a dietitian based on subject’s food preferences and habits as reported in the alimentary diary.
Figure 1: The low protein content of the diet is - as highlighted in the annotations to this graphical illustration of the macronutrient composition of the test diets - problematic, to say the least.
Approximately, 55% of energy intake was from carbohydrates, 25% from lipids, and the remaining 20% from proteins. Part of these 20% of protein were either 1.4g and 2.8g of fish protein or 1.4g of whey protein isolate as a control (I just assume that the dosage was 1.4g, because there was only one whey group), which were consumed in form of a flavored shake according to the following protocol:
"Both the active (one dose treatment arm) and the placebo products were taken as follows: ‘dilute the content of one sachet in a large glass of cool water (200 ml). Shake or stir with a spoon. Consume within 10 30 min before the main meal’. In the case of two-dose treatment arm, one sachet of the active product was taken 30 min before lunch and one sachet 30 min before dinner" (Nobile. 2016).
To be able to tell what could be responsible for advantages or disadvantages of the two treatments, the scientists assessed more than just body weight, fat mass (DXA scans), and safety of use as well as the secondary efficacy endpoints, extracellular water, and the circumference of waist, hips, and thighs. They also checked the CCK and GLP-1 levels in their subjects' blood. This is relevant, because this is how the fish hydrolysate is advertised on the manufacturers website:
"Taken daily before meals, Slimpro® increases the production of CCK and GLP-1 in the body, thus amplifying messages associated with a decrease of food intake. Promising results were reported from in vivo et in vitro trials of these molecules that may control food intake. Scientists have described this ingredient as a direct action on the hunger process" (Nobile. 2015).
As it is usually the case in studies like this, some patients were "lost". In this case, we're talking about a total count of eleven subjects who did not reappear for the follow-up check (One subject in the one-dose treatment arm, four subjects in the twodose treatment arm, and six subjects in the placebo treatment arm discontinued intervention because they were no longer interested to participate in the study). The results of the other subjects are plotted in Figure 2:
Figure 2: Changes in body composition after 45 and 90 days of dieting w/ the specific supplements (Nobile. 2016).
As you can see, double-dosing had astonishingly little effect on the subjects' ability to lose body fat. That's in contrast to switching from fish protein hydrolysate to whey protein isolate, which produced measurably, but not statistically reduced rates of fat loss and waist reductions.
Figure 3: Blood biomarker levels. (a) CCK blood levels and (b) GLP-1 blood levels. Intragroup (vs. D0) statistical analysis is reported upon the bars of the histogram. The lines report the intergroup (vs. placebo) statistical analysis. Statistical analysis is reported as follows: *p < 0.05, **p < 0.01, and ***p < 0.001. Data are mean +/- SE (Nobile. 2016).
And guess what: Even though the bars don't look like it, the asterisks over the bars tell you that these differences may be caused by the same differential expression of the satiety hormones CCK and GLP-1 in the fish hydrolysate vs. whey protein group that has been observed with other control protein in previous studies and is boldly advertised on the producer's website.
Great! Let's eat more fish... It stands out of question that the former is actually a very good idea (assuming you make the right fish choices). I have to warn you, though: Firstly, the fish protein consumed in the study at hand came from fish, but just like whey protein and milk, fish and fish protein hydrolysates will also have different effects.

Is Wild Caught Fish Always the Better Choice? With Sign. More N3 and Less Pollutants?  Learn more!
What is probably way more important, however, is the relative protein deficiency of the subjects. With only 20% of the diet being protein, the study participants hovered around at the meager level of the RDA. Since the effects of 1.4g of fish protein hydrolysate you throw on top of a low protein diet are probably very different from those of the same amount of fish protein consumed alongside 2g/kg of dietary and supplemental protein, I wouldn't guarantee and in fact even doubt that you would see a similar almost 100% increase in fat loss while dieting - and still,  the CCK and GLP-1 boosting effects of fish protein hydrolysates are intriguing | Comment on Facebook!
References:
  • Duarte, Jairo, et al. "Immunomodulating capacity of commercial fish protein hydrolysate for diet supplementation." Immunobiology 211.5 (2006): 341-350.
  • Hatanaka, Akimasa, et al. "Isolation and identification of antihypertensive peptides from antarctic krill tail meat hydrolysate." Journal of food science 74.4 (2009): H116-H120.
  • Kim, Se-Kwon, Dai-Hung Ngo, and Thanh-Sang Vo. "Marine fish-derived bioactive peptides as potential antihypertensive agents." Adv Food Nutr Res 65 (2012): 249-260.
  • Li, Ying, et al. "Purification of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide with an antihypertensive effect from loach (Misgurnus anguillicaudatus)." Journal of agricultural and food chemistry 60.5 (2012): 1320-1325.
  • Marchbank, T., et al. "Clinical trial: protective effect of a commercial fish protein hydrolysate against indomethacin (NSAID)‐induced small intestinal injury." Alimentary pharmacology & therapeutics 28.6 (2008): 799-804.
  • Möller, Niels Peter, et al. "Bioactive peptides and proteins from foods: indication for health effects." European journal of nutrition 47.4 (2008): 171-182.
  • Nazeer, R. A., NS Sampath Kumar, and R. Jai Ganesh. "In vitro and in vivo studies on the antioxidant activity of fish peptide isolated from the croaker (Otolithes ruber) muscle protein hydrolysate." Peptides 35.2 (2012): 261-268.
  • Najafian, L., and Abd Salam Babji. "A review of fish-derived antioxidant and antimicrobial peptides: their production, assessment, and applications." Peptides 33.1 (2012): 178-185.
  • Ngo, Dai-Hung, et al. "Free radical scavenging and angiotensin-I converting enzyme inhibitory peptides from Pacific cod (Gadus macrocephalus) skin gelatin." International journal of biological macromolecules 49.5 (2011): 1110-1116.

Senin, 28 September 2015

Vitargo™, Red Bull™ + Co. Research - Are They Worth It? Beef Can Keep Up W/ Whey For Gains! "Creatine Loading" = Too Much of a Good Thing - ISSN Research Review '15 #1

When you're running on a treadmill it obviously takes more than one serving of Red Bull or other commercial energy drinks to kickstart your workout performance | learn more below.
Initially I wanted to cherry pick only the most interesting study results that were presented in form of of poster presentations at the Twelfth International Society of Sports Nutrition (ISSN) Conference and Expo in 2015. After looking at the research that is - as of now - only available in form of (albeit often detailed) abstracts, I decided that there are way too many interesting studies to cover only three of them in depth or all of them only cursory. Accordingly, I decided to start a SuppVersity Mini Special with this being the first out of 3-4 issues in which I will briefly discuss the most significant results of those of the roughly two dozen studies, I (a) believe are of greatest interest to you and (b) feel comfortable talking about without having all the details in form of the still to be published full texts.
Read more about ISSN and other studies at the SuppVersity

Vitargo, Red Bull, Creatine & More | ISSN'15 #1

Pump Supps & Synephrine & X | ISSN'15 #2

High Protein, Body Comp & X | ISSN'15 #3

Keto Diet Re- search Update | ISSN'15 #4

The Misquantified Self & More | ISSN'15 #5

BCAA, Cholos-trum, Probiotics & Co | ISSN'15 #6
  • The latest research on Vitargo(TM) -- The mere fact that the latest study on Vitargo(TM) was presented in "three servings", on the latest ISSN meeting, i.e. (1) on the glucose and insulin response (Almada. 2015), (2) on the incretin response (Anzalone. 2015) and (3) on the power output during a subsequent bout of resistance exercise (Van Eck. 2015), could raise some concerns about the objectivity of the results, but is as Patrick Jacobs kindly reminded me common scientific practice.. So, let's put the skepticism aside and take a look at the study design and results.

    Post-Workout Glycogen Repletion | Read the my overview article.
    Sixteen resistance trained men participated in a double-blind, placebo-controlled, randomized crossover study, which consisted of three testing sessions, each separated by one week. In sessions 1-3, subjects completed a glycogen depleting cycling bout of 60 minutes at 70% VO2 max, followed by six, one-minute sprints at 120% VO2 max.

    Immediately post-exercise subjects ingested a placebo (PLA), or a low molecular (LMW) or high molecular weight (HMW) CHO (=Vitargo(TM)) solution (10%) providing 1.2g/kg body weight CHO; assigned randomly. Blood samples were taken prior to ingestion and every ten minutes for 2h.

    For the "first" and "second" serving of the study this was enough. These mini-presentations dealt with the insulin, glucose and incretin response to the two supplements, only. For the "third serving", however, the scientists included performance data from a subsequent bout of exercise, during which the participants did 5 sets of 10 repetitions of back squats (75% 1RM) "as explosively as possible" (if subjects paused for more than 2 seconds or were unable to complete a rep, resistance was lowered by 13.6 kg | Van Eck. 2015).
    Figure 1: Overview of the most relevant results (LMW = low molecular weight CHO vs. HMW = Vitargo (TM) high molecular weight CHO) from Almada (2015), Anzalone (2015) and Van Eck (2015).
    As you can see in my overview of the most relevant results, the scientists did not find practically meaningful differences in study I-II. In study III, which compared the effects of low to high molecular weight carbohydrates (LMW vs. HMW) on squat performance 2h after the glycogen-depleting workout, this was slightly different:
    "HMW conferred a likely beneficial effect in Sets 4 and 5 (92.5% and 88.7% likelihood, respectively), compared to PLA; while ingestion of LMW conferred only a possibly beneficial effect (68.7%) and likely beneficial effect (83.9%) in Sets 4 and 5, respectively" (Van Eck. 2015).
    And still, if you read the conclusion, "the ingestion of a HMW CHO solution providing 1.2 g/kg CHO may allow athletes to sustain power output in a subsequent resistance training session when time between training sessions is limited" (Van Eck. 2015), carefully, you will notice the words "likely" and "possibly" which signify the putative nature of the effect. What may be even more relevant than that, is yet that few of you will do glycogen-depleting exercises at 4:00 pm and hit the gym again for an intense leg workout at 6:00 pm. Accordingly, the practical relevance of the "sustained power output" Van Eck et al. observed is probably restricted to a small group of professional athletes. For people who fall into this category or strength athletes training twice a day, though, using Vitargo (TM) may in fact offer significant benefits.
  • Beef and whey support lean mass gains similarly effectively -- If you are asking yourself if beef isolate protein is a good or at least decent replacement for whey, the post-workout protein supplementation "gold standard" some people can't use due to its (albeit low) lactose content, a recent study from the University of Tampa (Sharp. 2015) has the answer you are looking for.
    Figure 2: Relative improvements in muscle size (hypertrophy) and body fat (fat loss) in response to beef isolate or whey protein supplementation; expressed relative to maltodextrin placebo (Sharp. 2015).
    As the data in Figure 2 tells you, it will make a good replacement! If we go by the average increase in lean mass and loss of fat mass, the beef isolate that was consumed in amounts of 2x20g per day either immediately after each of the 5 weekly workouts (3 resistance training, 2 cardio; 8 weeks total, daily undulating periodization) or at a similar time in the day, you may even argue that the beef protein had the overhand over its "milky" competitor. If we take the individual variations into account, though, the 1% lean mass and almost 3% fat loss advantage (DXA values) of the beef protein turns out to be statistically non-singifican.

    The same goes for differences in strength gains, of which the researchers found that they were identical not just in the two supplement, but also in the supplement and control groups. The lack of additional power during the bench press test may, as the researchers point out, be ascribed to both increases in neural and morphological adaptations" (Sharp. 2015) which would "negate" (ibid.), or as I would phrase it, 'override' potential additive effects of any of the protein supplements (whey and beef, alike).
  • Energy drinks a waste of money on the treadmill? At first sight, the results of the latest study by Sanders et al. (2015) do in fact suggest that energy drinks were a total waste of money for those of you who are consuming them before a regular cardio workout on the treadmill. After all, none of the tested drinks lead to statistically significant improvements in either perceived treadmill exercise performance or running economy assessed via oxygen consumption at 70% treadmill exercise.
In contrast to treadmill running, the performance during a cycling time-trial can be improved by the consumption of an energy drink - a potential explanation for the difference may be that the subjects in the Ivy study consumed 2x  more Red Bull than the subjects in Sanders' study.
Energy drinks don't work? Well, the overall research shows a more diverse picture. While a previous study by Astorino et al. (2012) and a similar study by Candow et al. (2009) that tested the effects of Red Bull on repeated sprint performance and its effects on time to exhaustion, respectively, yielded similarly disappointing results, Ivy et al. (2009) and Forbes et al. (2007) found benefits. More specifically, the researchers observed significant increases in upper body muscle endurance (yet no effect on anaerobic peak or average power during repeated Wingate cycling tests in young healthy adults | Forbes. 2007) and improved cycling time-trial performance (without concomitant increase in perceived exertion | Ivy. 2009) - albeit with 2x more Red Bull than in the study at hand (500ml vs. 250ml).
  • Now, some of you may argue that all you care about when you buy an energy drink is that it makes it easier for you to hit your target time on the treadmill. Well, I can understand that, but in view of the fact that neither of the caffeine laden 8.4 oz. Red Bull®, 16 oz. Monster Energy ®, 2 oz. 5-hour ENERGY® drinks affected the subjects subjective rates of perceived exertion, it does appear questionable that these drinks can actually help you.

    It does thus stand to reason that Sanders et al. conclude that the "results [of their latest study] do not support manufacturers' claims regarding their product's ability to boost performance" (Sanders. 2015). The scientists are yet also right that it would be necessary to find out whether time trial or time to exhaustion sprint and endurance performance benefit, as respective studies may be better suited to reliably "assess if these energy drinks can, in fact, improve exercise performance" (ibid.) - and in view of the fact that previous studies with corresponding outcomes yielded conflicting results (see blue box above), I can fully subscribe to that: We need more (non-sponsored) quality studies ;-)
  • More evidence that creatine loading is not the way to go -- In Gann et al.'s latest study, fourteen (Cr = 7, Pl = 7) non-resistance-trained (i.e. < thrice weekly, 1 year prior) men between the ages of 18-30 were randomly assigned by age and body weight to orally ingest a powdered dextrose placebo or creatine monohydrate (Gann. 2015).

    After baseline strength and body composition testing procedures, participants ingested creatine or placebo at a dose of 0.3g/kg lean body mass/day (≈ 20-25g/day) for a 5 day loading phase immediately followed by a 42-day maintenance phase at a dose of 0.075g/kg lean body mass/day (≈ 5-7g/day). The participants followed a periodized 4 day per week resistance-training program split into two upper body and two lower body workouts per week, for a total of 7 weeks. Blood and muscle samples were obtained at Day 0, 6, 27, and 48. Statistical analyses were performed utilizing separate two-way ANOVA for each criterion variable employing a probability level of ≤ 0.05.
    Figure 3: Don't be fooled by shiny ads! While there is evidence that some forms of creatine will be faster absorbed than creatine monohydrate, only the addition of dextrose (and ALA or baking soda) have actually been shown to increase the muscular retention of creatine in experiments (Jäger. 2011) 
    As you'd expect, the addition of creatine lead to significant increments in total body mass (p = 0.03) and lean body mass (p = 0.01). What creatine did not do, though, was to affect the amount of body fat the subjects were carrying around. The latter decreased to a similar extent in both groups in response to resistance training, alone (p = 0.001) - without any effect of creatine supplementation. Much to my personal surprise, the same was the case for the subjects' muscle strength, which was - likewise - increased to the same extent in both groups.

    So what? Well, in contrast to the uncommon lack of effect on muscle strength, the lack of effect on body fat is sad, but had to be expected. Both findings are yet not why this study made the SuppVersity Cut. That is or rather was Gann's observation that the loading phase lead to significant increases in of urinary creatine (p = 0.036), and urinary creatinine (p = 0.01) in the creatine group compared to placebo. This "excess amounts of serum and urinary creatine and urinary creatinine content" (Gann. 2015) provides further evidence that the (still common) practice of creatine loading is useless and 100% safe certainly only in the short term. In the long term, however, I'd highly suggest that you avoid super-dosing on creatine - I mean, why would you want to use 20g per day, when 3-5 g per day is enough (Wilder. 2001) and more than will "lose" once the creatine levels of your muscles are saturated (the exact washout time is unknown, but studies indicate it may be >40 days of consuming no creatine at all | Deldicque. 2008)?
Intra-workout BCAA supplements are marketed specifically to resistance trainees. If they do have anti-catabolic effects, though, those are - just like potential fatigue reducing effects - significantly more likely to occur in endurance trainees | learn more
What else? In the bottom line of this mini-series I will briefly reference those studies that did not make the SuppVersity Cut for various reasons. Studies like those on the benefits of BCAAs, for example (Kephart. 2015 or Mumford. 2015). For this kind of study I would need the full-text, not just the abstract to tell you how relevant conclusions like the "BCAA supplement did not appear to enhance recovery benefits compared to a CHO control", "a few areas of performance were bolstered to a point of practical importance"(Kephart. 2015) or "BCAA supplementation [...] may benefit immune function during a prolonged cycling season" (Mumford. 2015), actually are. As soon as the corresponding full papers you have published I will obviously make good for any performance-relevant information I may be missing by ignoring the abstracts, today | Comment on Facebook!
References:
  • Almada, Anthony L., et al. "Effect of post-exercise ingestion of different molecular weight carbohydrate solutions. Part 1: The glucose and insulin response." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P30.
  • Astorino, Todd A., et al. "Effects of red bull energy drink on repeated sprint performance in women athletes." Amino acids 42.5 (2012): 1803-1808.
  • Anzalone, Anthony J., et al. "Effect of post-exercise ingestion of different molecular weight carbohydrate solutions. Part II: The incretin response." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P31.
  • Candow, Darren G., et al. "Effect of sugar-free Red Bull energy drink on high-intensity run time-to-exhaustion in young adults." The Journal of Strength & Conditioning Research 23.4 (2009): 1271-1275.
  • Deldicque, Louise, et al. "Kinetics of creatine ingested as a food ingredient." European journal of applied physiology 102.2 (2008): 133-143.
  • Forbes, Scott C., et al. "Effect of Red Bull energy drink on repeated Wingate cycle performance and bench-press muscle endurance." International journal of sport nutrition and exercise metabolism 17.5 (2007): 433.
  • Gann, Joshua J., et al. "Effects of a traditionally-dosed creatine supplementation protocol and resistance training on the skeletal muscle uptake and whole-body metabolism and retention of creatine in males." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P2.
  • Ivy, John L., et al. "Improved cycling time-trial performance after ingestion of a caffeine energy drink." International journal of sport nutrition 19.1 (2009): 61.
  • Jäger, Ralf, et al. "Analysis of the efficacy, safety, and regulatory status of novel forms of creatine." Amino Acids 40.5 (2011): 1369-1383.
  • Kephart, Wesley C., et al. "Ten weeks of branched chain amino acid supplementation improves select performance and immunological variables in trained cyclists." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P20.
  • Mumford, Petey, et al. "Effects of sub-chronic branched chain amino acid supplementation on markers of muscle damage and performance variables following 1 week of rigorous weight training." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P29.
  • Sanders, Gabriel J., et al. "The effect of three different energy drinks on oxygen consumption and perceived exertion during treadmill exercise." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P1.
  • Sharp, Matthew, et al. "The effects of beef protein isolate and whey protein isolate supplementation on lean mass and strength in resistance trained individuals-a double blind, placebo controlled study." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P11.
  • Van Eck, Leighsa E., et al. "Effect of post-exercise ingestion of different molecular weight carbohydrate solutions. Part III: Power output during a subsequent resistance training bout." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P32.
  • Wilder, Nathan, et al. "The effects of low-dose creatine supplementation versus creatine loading in collegiate football players." Journal of athletic training 36.2 (2001): 124.