Tampilkan postingan dengan label training. Tampilkan semua postingan
Tampilkan postingan dengan label training. Tampilkan semua postingan

Minggu, 26 Juni 2016

Strength Plateau? Try Daily Changing Loads: In Advanced Trainees, A, B, C-Days W/ 15, 10, 5 Reps at 70, 80, 90% 1RM Boost 6-Week Strength Gains on All Major Lifts by ~40%

DCL, i.e. using daily changing loards worked for both, men and women.
The object of today's SuppVersity article comes almost from around the corner: a study conducted by Christoph Eifler, a scientist from the Department of Applied Training Science at the German University of Applied Sciences for Prevention and Health Management (DHfPG) in Saarbrücken (Germany) that is supposed to provide "evidence based training recommendations to the 8.55 million recreational athletes [who] perform fitness-related resistance training in German [gyms]" (Eifler. 2016) - advice that's valid for US boys & girls, Frenchmen & -women and even the Brexiters, too ;-)

As the relatively unspectacular abstract says, "[t]he purpose of this investigation was to analyze the short-term effects of different loading schemes in fitness-related resistance training and to identify the most effective loading method for advanced recreational athletes" (Eifler. 2016)... not exactly something other studies hadn't done before, right? Well, I agree, but...
Learn more about training for "gainz" in both strength and size...

What's the Right Training 4 You?

Hypertrophy Blueprints

Fat Loss Support Blueprint

Strength Training Blueprints

Study: Over-training Exists

Recovering from the Athlete's Triad
Not only was the study "designed as a longitudinal field-test study", it also included two hundred healthy mature subjects with at least 12 months experience in resistance training and 4 groups of 50 subjects, each (equal gender distribution), who were randomly assigned to train according to the following four load-schemes for six weeks (see Table 1 for a detailed breakdown):
  • constant load (CL) with constant volume of repetitions, 
  • increasing load (IL) with decreasing volume of repetitions, 
  • decreasing load (DL) with increasing volume of repetitions, 
  • daily changing load (DCL), and volume of repetitions 
As Eifel highlights, "[a]ll participants performed a standardized resistance training protocol" which comprised an entire resistance training protocol with 8 resistance training exercises for different muscle groups in a systematic and standardized order.
Table 1: Study design: constant and variable loading parameters | *TS = training session; CL = constant load; IL = increasing load; DL = decreasing load; DCL = daily changing load; 1RM = 1 repetition maximum (Eifel. 2016).
Exercise collocation and exercise order in pretest, posttest, and training period were, as Eifel highlights, chosen to be "representative as possible for a recreational resistance training program at commercial fitness clubs" (Eifel. 2016).
Where's the DEXA scanner? That's exactly the question Eifler probably asked himself when he did this field study... all jokes aside: Germany is a rich country, but we still don't have a DEXA at each gym. This is why "[i]n this investigation, training effects were exclusively quantified by testing strength performance (10RM, 1RM)", even though the author knows that "[m]ost clients of a commercial fitness club perform resistance training for preventive or aesthetic aspects" (Eifler. 2016). Ah,... and before you start complaining, I should remind you of the number and training experience of the subjects: N=200 advanced trainees - that gives the study an almost unique statistical power and high practical relevance for trainees like you and me.
More specifically, both, in testing and training, the following resistance training exercises were performed (in the given order): horizontal leg press, chest press, butterfly, lat pull-down, horizontal row, dumbbell shoulder press, cable triceps push-downs, and dumbbell biceps curls - all done on standard gym equipment from various manufacturers (Gym80, Technogym, Lifefitness, Panatta, Nautilus, Precor, David, Schnell, MedX by Delphex, Cybex, Ergofit, and Matrix) and/or with customary dumbbells.
Figure 1: Cumulated effect sizes (Cohen’s d) in 10RM & 1RM (Eifel. 2016); %-ages = rel. difference to DCL | * p < 0.05 for DCL vs. DL and IL & p < 0.001 for DCL vs. CL; p < 0.001 for the mean difference of DCL vs. others (Eifel. 2016).
Unsurprisingly, significant effects on muscle strength gains (p < 0.001) "could be noted for all resistance training exercises" (Eifel. 2016). What may not be that self-evident, on the other hand, is that Eifel also observed significant inter-group differences for both dependent variables (10RM, 1RM), with daily changing load (DCL, EDIT of which I previously falsely claimed that it was fundamentally different from undulating periodization, as it was assessed in e.g. Foschini. 2010; Monteiro. 2009; Rhea. 2002; Simão. 2012 - it's obviously the same, but with the order of the three workouts being reversed every week) in which the analysis of the effect sizes indicates "significantly higher strength gains (p < 0.001) than CL, IL, and DL.

It is furthermore worth mentioning that a comparison of constant, increased and decreasing load patterns did not yield any statistically significant differences. This is likewise an important result, because it explains why most previous studies indicate that changing the load scheme will not significantly affect the performance outcomes of resistance training protocols. After all, said studies mostly lacked a DCL scheme, i.e. a training program in which the loading patterns changed according to Table 1 on a daily basis (or rather from session to session).
Another alternative to try is classic pyramid training, I suggest that you (re-)read my 2012 article "Up & Down The Rack: Study Compares Strength & Size Gains from Good Old Double-Pyramid and Reverse Loading" which discusses a study that confirms its efficacy and suggests that especially the thighs will benefit.
"No gainz, bro?" I am quite certain that there were muscle gains in all subjects. They were just not evaluated in the study at hand (cf. red box). With that being said, the evidence that "resistance training following DCL is more effective for advanced recreational athletes than CL, IL, or DL" (Eifel. 2016), is conclusive enough to assume a similar advantage will exist for other study outcomes, including your beloved "gainz". After all, this well-powered study leaves no doubt that with DCL, which "is widely unknown in fitness-related resistance training", there's "potential for improving resistance training in commercial fitness clubs" (Eifel. 2016) - and let's be honest: isn't training w/ different reps / intensities sets (increasing load) on each workout and reversing the order of the days every week also more fun than classic linear periodization? Comment!
References:
  • Foschini, Denis, et al. "Treatment of obese adolescents: the influence of periodization models and ACE genotype." Obesity 18.4 (2010): 766-772.
  • Eifler, C. Short-term effects of different loading schemes in fitness-related resistance training. J Strength Cond Res 30(7): 1880–1889, 2016
  • Monteiro, Artur G., et al. "Nonlinear periodization maximizes strength gains in split resistance training routines." The Journal of Strength & Conditioning Research 23.4 (2009): 1321-1326.
  • Rhea, Matthew R., et al. "A comparison of linear and daily undulating periodized programs with equated volume and intensity for strength." The Journal of strength & conditioning research 16.2 (2002): 250-255.
  • Simão, Roberto, et al. "Comparison between nonlinear and linear periodized resistance training: hypertrophic and strength effects." The Journal of strength & conditioning research 26.5 (2012): 1389-1395.

Jumat, 20 Mei 2016

Polarized Concomitant Training - Will it Help You Make Max. Gains & Improvements in Body Comp. W/ Strength+Cardio?

Polarized training? Find out more...
Does concurrent / concomitant training intensity distribution matter? Unless you're a first timer at the SuppVersity you will have read at least two or three previous articles of mine about studies investigating the effects of concurrent training, i.e. the combination of strength and cardio training, (i.e. concomitant training) here.

If you recall the results, you will know that previous research has demonstrated the influence of intensity distribution on strength endurance training adaptations.
You can learn more about the optimal exercise order at the SuppVersity

What's the Right Training 4 You?

Hypertrophy Blueprints

Fat Loss Support Blueprint

Strength Training Blueprints

Study: Over-training Exists

Recovering from the Athlete's Triad
You may also remember that no previous study has addressed the influence of "intensity distribution", i.e. the way intensity and volume are distributed across the training sessions, on the effectiveness of concurrent training (CT | see Figure 1). The goal was to prevent interference of the two types of training:
Figure 1: Training design of the experimental groups during the 8-week training period. Continuous-line and dotted-line circles represent the different training session modalities for the PT and TT groups, respectively. PT: polarized training group; TT: Traditional-based training group; BW: brisk walking; RM: repetition maximum; RNG: running; IST: intermittent sprint training (Varela-Sanz. 2016).
"Another problem which must be solved is the comparison of external training loads. Thus, our independent variable and focus was training intensity distribution with an equivalent total external load [...] of both training programs. A training group performed a combination of strength and endurance training aligned with the current ACSM recommendations of intensity distribution, while another group performed the same amount of external workload but with a polarized intensity distribution. Both ex. groups were evaluated before and after an 8-week training period (weekly training frequency of 3 days), and compared to a control group. To examine the effectiveness of the [...] training regimes, [...] physical (jump capacity, upper- and lower-body strength, running performance, and body composition), physiological (heart rate variability), and perceptual variables (rate of perceived exertion, training impulse, and feeling scale) were examined as dependent variables" (Varela-Sanz. 2016)
Thirty-one healthy sport science students (30 men, 5 women; all moderately active, but training less than 2 days per week apart from their academic activities which included a variable amount of PA on a daily basis) volunteered and were, after a 2-week familiarization phase (training thrice a week for two weeks), evaluated for resting heart rate variability (HRV), countermovement jump, bench press, half squat, and maximum aerobic speed (MAS).
I don't get it. How exactly did this "polarized training" work? Yes, the protocol was different from the one you may remember from Seiler et al. (2006) who tried to quantify training intensity distribution in elite endurance athletes. More specifically, subjects trained thrice a week (i.e. Monday, Wednesday, and Friday) for ~120 min each on Monday and Friday, and ~60 min on Wednesday. The training sessions on Mondays and Fridays consisted of cardiorespiratory exercise training (i.e. brisk walking or running) followed by resistance exercise training; meanwhile on Wednesdays participants only performed cardiorespiratory exercise training.

Each training session started with a standardized warm-up that consisted of 5 min of calisthenics followed by 5 min of brisk walking at 30% of the MAS. Before resistance exercises, participants also performed a specific warm-up that consisted of 2 sets of 8 repetitions of the resistance circuit they performed during the familiarization period with a OMNI-Scale perception of effort of 2-3. Cooling down exercises consisted of 2-3 sets of 15 s of stretching exercises of the muscle groups involved during the session. The exercises during the actual workout were bench press and half squat. Based on the conclusions of Simão et al., whose study had revealed that you will see greater gains on those exercises you do first in your workout, the order of resistance exercises was alternated each week. In that, the TT group performed 3-5 sets of 10-12 RM with 3 min of rest between sets. The PT group performed 3-5 sets of 5 RM on Mondays, and 2-4 sets of 15 RM on Fridays. The rest between sets was always 3 min. Resistance exercise workloads were equated.
All were then randomly distributed into either a traditional-based training group (TT; n=11; 65-75% of MAS, combined with 10-12RM), polarized training group (PT; n=10; 35-40% and 120% of MAS, combined with 5RM and 15RM), or control group (CG; n=10).
Figure 2: Relative changes in heart rate, jump height, peak power, bench press (1RM) and half squat (1RM) after 8 weeks of traditional (TT), polarized (PT) training or control (Varela-Sanz. 2016).
After 8 weeks of training (3 days.week-1), TT and PT exhibited similar improvements in MAS, bench press and half squat performances. No differences were observed between TT and PT groups for perceived loads. There were no changes in heart rate variability (HRV) for any group although TT exhibited a reduction in resting HR.
Figure 3: Effect sizes corresponding to the relative values in Figure 1 (Varela-Sanz. 2016).
What is worth mentioning, though, is that, compared to other groups, the PT group maintained jump capacity with an increment in body weight and BMI without changes in body fatness, in other words: they gained muscle, but also fat (see Figure in Bottom Line | body fat measured by skinfold "only").

There's one thing we didn't discuss yet: Was the polarized training maybe less taxing or more fun? The findings of the study at hand suggest that this was the case: TT and PT reported similar perceptions of effort, sensations, and internal load levels over the 8-week training period. Briefly, RPE and TRIMPS increased progressively along the 8-week training period. These perceptual levels demonstrated an increase in external load during the 3rd microcycle compared to the 1st and 2nd microcycles of each mesocycle. Thus, "the current findings suggest that different concurrent training regimes of equated loads could be similarly perceived by participants" (Varela-Sanz. 2016).
Effects on body composition; effect sizes and rel. (%) changes (Varela-Sanz. 2016).
Bottom line: The previously outlined observations lead the scientists to conclude that their funky polarization approach to concurrent training "induced similar improvements in physical fitness of physically-active individuals", but that "PT produced a lower interference for jumping capacity despite an increment in body weight, whereas TT induced greater bradycardia" (Varela-Sanz. 2016).

The fact that there were further benefits in terms of peak power, squat and bench press performance, but that those were not statistically significant (see Figure 2), however, is something the scientists don't mention in the abstract, even though these differences could become significant in the longer (>8 weeks) term.

A mistake? No, in view of the conflicting evidence from the calculated effect sizes (see Figure 3), it is absolutely correct to say that there were no meaningful inter-group differences in the most important parameters for most trainees, i.e. the bench press, half squat and the effects on body comp (see Figure on the right) | Comment!
References:
  • Seiler, K. Stephen, and Glenn Øvrevik Kjerland. "Quantifying training intensity distribution in elite endurance athletes: is there evidence for an “optimal” distribution?." Scandinavian journal of medicine & science in sports 16.1 (2006): 49-56.
  • Simao, Roberto, et al. "Exercise order in resistance training." Sports Medicine 42.3 (2012): 251-265.
  • Varela-Sanz, Adrián; Tuimil, José L.; Abreu, Laurinda; Boullosa, Daniel A. "Does concurrent training intensity distribution matter?" Journal of Strength & Conditioning Research: Post Acceptance: May 09, 2016 doi: 10.1519/JSC.0000000000001474.

Sabtu, 23 April 2016

BFR, Detraining Mass & Strength | Multiple Sets Multiply 'Ur EE | 1- vs. 2-Arm Kettle Bell Swings Rock the Core & More

The # of hands you use to hold your KB while doing swings determines core muscle activity.
With the publication of the latest issue of the The Journal of Strength & Conditioning Research (May 2016 - Volume 30 - Issue 5 | read it), the time has come to do a training science update with data on the effects on blood flow restriction on strength and size gains during detraining, the energetic demands of single vs. multi-set training, the highly significant core muscle activity patterns with single- vs. two-arm kettlebell swings and a handful of auxilliary studies summarized in the bottom line... Sounds interesting? Well, then I don't want to keep you any longer. Let's see which insights said studies have to offer...
You can use BFR powered detraining in your periodization schemes.

30% More on the Big Three: Squat, DL, BP!

Mix Things Up to Make Extra-Gains

Linear vs. Undulating Periodizationt

12% Body Fat in 12 Weeks W/ Periodizatoin

Detraining + Periodization - How to?

Tapering 101 - Learn How It's Done!
  • Low intensity blood flow restriction training done during three times per week during 6 weeks of detraining helps maintain mass in in phys. active subjects (Kim. 2016).

    Compared to vigorous cycling at 60–70% of the subjects' individual heart rate reserve [HRR] without BFR, the low-intensity cycling protocol (30% HRR) with BFR (160–180 mm Hg) Kim et al. prescribed to their subjects, thirty-one healthy college-aged males (22.4 ± 3.0 years, range: 19–30 years), actually increased the leg lean mass of the subjects over time.
    Table 1: Strength and body composition data - *LI-BFR = low-intensity cycling with BFR; CON = control; BFLBM = bone-free lean body mass; ES = effect size; VI = vigorousintensity (Kim. 2016)
    The strength development in both groups was identical, though. This and the fact that cycling is not exactly what you should do to maintain strength and size (learn more about detraining) are yet things you have to keep in mind, before freaking out about how "awesome" BFR is.
  • Study unsurprisingly confirms the superior energy requirements of multiple- vs. single-set workouts - Difference is larger than 100%, in young men and women (Mookerjee. 2016).

    In their study, the researchers from the Universities of Pennsylvania and Cumberlands, as well as the College of New Jersey compare energy expenditure (EE) of single-set and multiple-set resistance exercise protocols using indirect calorimetry.
    Table 2: Loads (kg) used for each exercise presented by gender and combined data (Mookerjee. 2016).
    Twelve men and twelve women (age = 21.4 ± 1.3 years) performed a single-set (SS) and multiple-set (MS) resistance exercise protocol in random order. The subjects performed two protocols at 70% of their 1-repetition maximum. The protocols consisted of 5 upper-body exercises of either 1 or 3 sets per exercise performed in random order. Metabolic and cardiorespiratory data were recorded over the entire exercise session and during 5 minutes of recovery by a portable metabolic measurement system.
    Figure 1: Gross and net (left), as well as relative (per lbm) EE in kcal during SS (single set) and MS (multiple set) training in male and female study participants (Mookerjee. 2016).
    As you can see in Figure 1, the gross (167.9 ± 58.7 kcal) and net (88.3 ± 41.6 kcal) EE for the MS protocol were significantly greater (p < 0.001) than gross (71.3 ± 26.5 kcal) and net (36.3 ± 18.7 kcal) EE of the SS protocol. Conversely, there was no significant difference in the rate of EE between both protocols. Heart rate, respiratory rate, relative V[Combining Dot Above]O2, respiratory exchange ratio, and minute ventilation values were significantly higher during the MS than the SS protocol.

    As it was to be expected, a significant gender difference (p < 0.001) in absolute and relative EE was observed for both protocols where values in men were higher than women. 
  • Doing kettle bell swings with one vs. two arms induces a greater neuromuscular activity for the contralateral side of the upper erector spinae and ipsilateral side of the rectus abdominis, and lower activation of the opposite side of the respective muscles (Anderson. 2016).

    The aim of the study of this study from Norway was to compare the electromyographic activity of rectus abdominis, oblique external, and lower and upper erector spinae at both sides of the truncus in 1-armed and 2-armed kettlebell swing. To this ends, the researchers had sixteen healthy men perform 10 repetitions of both exercises using a 16-kg kettlebell in randomized order.
    Figure 2: Comparison of the EMG activity of the core muscles 1- vs. 2-armed kettle bell swings in sixteen healthy men (age, 25 ± 6 years; body mass, 80 ± 8 kg; stature, 180 ± 7 cm) with 7 ± 7 years of resistance training experience (Anderson. 2016)
    As the data in Figure 2 reveals, For the upper erector spinae, the activation of the contralateral side during 1-armed swing was 24% greater than that of the ipsilateral side during 1-armed swing (p < 0.001) and 11% greater during 2-armed swing (p = 0.026). Furthermore, the activation in 2-armed swing was 12–16% greater than for the ipsilateral side in 1-armed swing (p < 0.001). For rectus abdominis, however, 42% lower activation of the contralateral side was observed during 1-armed swing compared with ipsilateral sides during 2-armed swing (p = 0.038) and 48% compared with the ipsilateral side during 1-armed swing (p = 0.044). Comparing the different phases of the swing, most differences in the upper erector spinae were found in the lower parts of the movement, whereas for the rectus abdominis, the differences were found during the hip extension. In contrast, similar muscle activity in the lower erector spinae and external oblique between the different conditions was observed (p = 0.055–0.969). In conclusion, performing the kettlebell swing with 1 arm resulted in greater neuromuscular activity for the contralateral side of the upper erector spinae and ipsilateral side of the rectus abdominis, and lower activation of the opposite side of the respective muscles.
Normalized electromyography (EMG) amplitude values (mean 6 SD) for the straight and hexagonal barbells, collapsed across 65 and 85% 1 repetition maximum loads (Camara. 2016) |  ++ significant advantage of regular bar; + significant advantage of hexagnoal bar.
What else have we got? Well, there are Trexel's previously discussed popular creatine vs. caffeine study discussed in July 2015 (read more) and Ohya's 400- and 800-m track running study showing that even trained females' performance suffers from inspiratory muscle fatigue after short-duration running exercise, suggesting that "[c]oaches could consider prescribing inspiratory muscle training or warm-up in an effort to reduce the inevitable IMF associated with maximal effort running" (Ohya. 2016).

Furthermore, Camara's previously (only in the Facebook news) discussed study showing differences in the muscle activity pattens (data see Figure on the right) and significantly greater peak force, peak power, and peak velocity for deadlifts with hexoganal vs. regular bars, and, last but not least has now been officially published.

Last, but not least, Beyer's study showing that 4 weeks of unilateral strength training results in "an increase in strength and size of the trained musculature, and cross education of strength in the untrained musculature, which may occur without detectable changes in muscle size, activation, or the acute hormonal response" (Beyer. 2016) as well as two studies I will discuss in detail, next week, should not be forgotten either | Comment on Facebook!.
References:
  • Andersen, V, Fimland, MS, Gunnarskog, A, Jungård, G-A, Slåttland, R-A, Vraalsen, ØF, and Saeterbakken, AH. Core muscle activation in one-armed and two-armed kettlebell swing. J Strength Cond Res 30(5): 1196–1204, 2016
  • Camara, KD, Coburn, JW, Dunnick, DD, Brown, LE, Galpin, AJ, and Costa, PB. An examination of muscle activation and power characteristics while performing the deadlift exercise with straight and hexagonal barbells. J Strength Cond Res 30(5): 1183–1188, 2016
  • Kim, D, Singh, H, Loenneke, JP, Thiebaud, RS, Fahs, CA, Rossow, LM, Young, K, Seo, D-i, Bemben, DA, and Bemben, MG. Comparative effects of vigorous-intensity and low-intensity blood flow restricted cycle training and detraining on muscle mass, strength, and aerobic capacity. J Strength Cond Res 30(5): 1453–1461, 2016
  • Mookerjee, S, Welikonich, MJ, and Ratamess, NA. Comparison of energy expenditure during single-set vs. multiple-set resistance exercise. J Strength Cond Res 30(5): 1447–1452, 2016
  • Ohya, T, Yamanaka, R, Hagiwara, M, Oriishi, M, and Suzuki, Y. The 400- and 800-m track running induces inspiratory muscle fatigue in trained female middle-distance runners. J Strength Cond Res 30(5): 1433–1437, 2016.
  • Trexler, ET, Smith-Ryan, AE, Roelofs, EJ, Hirsch, KR, Persky, AM, and Mock, MG. Effects of coffee and caffeine anhydrous intake during creatine loading. J Strength Cond Res 30(5): 1438–1446, 2016

Kamis, 17 Maret 2016

Caffeine Keeps You Going When You'd Usually Rack the Weight - Does That Cause an Increase in Muscle Damage?

With only 65mg of caffeine, an espresso provides only ~12.5% of the amount of caffeine used in the study at hand.
If you've kept an eye on the latest caffeine research you may have noticed that there's an increasing number of studies that fails to find significant performance enhancing effects of caffeine during resistance training sessions (Trevino. 2015). Does this mean that caffeine, a substance that is by the way on the World Anti-Doping Agency's list of prohibited substances useless for gymrats? Certainly not.

One thing most of these studies have in common is that they tested the subjects' strength or power production during short workouts. Studies that investigate the effects of caffeine in higher volume contexts, on the other hand (e.g. Lang. 2015; Thomas. 2015), confirm that caffeine is rightly the most (ab-)used ergogenic among fitness enthusiasts.
You can learn more about coffee and caffeine at the SuppVersity

For Caffeine, Timing Matters! 45 Min or More?

Coffee - The Good, Bad & Interesting

Three Cups of Coffee Keep Insulin At Bay

Caffeine's Effect on Testosterone, Estrogen & SHBG

The Coffee³ Ad- vantage: Fat loss, Appetite & Mood

Caffeine Resis- tance - Does It Even Exist?
One thing that has recently caught my attention on Facebook is the claim that the performance enhancing effects of caffeine put you at risk of rhabdomiolysis, i.e. the potentially dangerous breakdown of muscle tissue. In theory, it'd appear logical to assume that an agent that has repeatedly been proven to significantly lower the perceived exertion/fatigue as well as muscle pain during exercise could lead to a greater degree of muscle damage during exercise.
Figure 1: Graphical overview of the experimental design of Ribiero's study (Ribiero. 2016).
To test the hypothesis that acute caffeine ingestion could attenuate leg power, and increase blood lactate at the expense of increased muscle damage, researchers from the Federal University of Rio de Janeiro recruited six male pro handball athletes who layed in the first division of the Brazilian National League of Handball (HBNL).
"All of them had at least 5 years of experience in the sport and trained for about 4 hours a day, 4-5 days a week. No athlete had a previous medical history of cardiopulmonary disease or used any medication during the study. The athletes reported intake of ~ 60 mg of caffeine per day (~ 1 cup of coffee)" (Ribiero. 2016).
In a randomized, placebo-controlled, double-blind crossover study, the subjects reported to the laboratory at two occasions after an 8-h fast and at least 24h of caffeine abstinence. 60 minutes after having a standardized breakfast, which consisted of bread, white cheese, and orange juice (CHO: 87 g, 348 kcal; PTN: 13.5 g, 54 kcal; LIP: 7 g, 63 kcal; Total: 465 kcal), they consumed either placebo (PLA), or caffeine (CAF; 6mg/kg body weight) and remained seated for another 60 minutes.
But this is not resistance training! While you're absolutely right, jumping is at least as notorious for producing muscle damage as regular resistance training. It is thus unlikely that leg presses or squats would have produced a greater degree of muscle damage than this intense VJ protocol.
After the 60-minute delay during which the serum caffeine levels rose to peak values (see previous SuppVersity article), they performed a short warm-up and a standardized vertical jump test the scientists describe as follows:
Figure 2: Mean leg power during VJ (Ribiero. 2016).
"The VJ performance was evaluated by the jump platform System Optical (Cefise®, São Paulo, Brazil). This equipment consists of a laptop with the software "Jump System" (version 1.0, São Paulo, Brazil), connected by a cable to a resistive (or capacitive) platform (equipped with infrared optical sensors). The timer software is triggered by the feet of the subject at the moment of release from the platform, and will be stopped at the moment of touchdown. This equipment has the same principle of “Ergojump” to inform the flight time (ms) and contact (ms). 
The error of measurement, when compared with film analysis has been reported to be in the order of ± 2% (18). The athlete was positioned, barefoot, in the interior of the platform and the jumps were performed starting from a standing position until approximately at an angle of 90° knee, using help from upper limbs at the time of the VJ execution" (Ribiero. 2016).
The VJ data were analyzed by average leg power (Watts/Kg) generated by the athletes. In that, the scientists separated the total number of vertical jumps into tertiles, so that they could have an understanding of the behavior of the jumps in the 1st tertile (i.e., theoretically better performance), in the 2nd tertile (i.e., theoretically an average performance), and 3rd tertile (i.e., theoretically a drop in performance).
Your muscle is not the only thing that could be overtaxed - Even though the ability to perform more sets / work out more intensely / longer may not have affected the primary marker of muscle damage in the study at hand, the chronic consumption of high doses of caffeine may still pose a risk to your central nervous system and contribute to sympathetic overtraining. Therefore I'd still recommend you stick of max. 400-600 mg caffeine per day and, instead of increasing the dosage, when it stops working, take a "caffeine break" whenever you stop noticing the "caffeine spike".
This allowed Ribiero et al. to make comparisons between groups and to assess the effects of supplementation. Effects of which the data in Figure 3 tells you that they became evident only in the latter tertile of jumps:
Figure 3: Nonlinear regression analyses (polynomial regression 3rd order). Leg of the power generated in each sets of athletes with tertiles in placebo (PLA) and caffeine (CAF) trials (Ribiero. 2016).
As you can see in Figure 2, the subjects hit the wall in said third tertile in the placebo trial. In the supplement trial, on the other hand, the performance decline was significantly ameliorated - not only, but especially during the first and second set (black squares and white circles). This effect becomes even more obvious when you take a look at the leg power the subjects exerted on the jump platform during the jumps in the 1st, 2nd and 3rd tertile (plotted in Figure 2): compared to the use of placebo caffein improved the leg power the of athletes in the 3rd tertile (p <0.05) by 5.23%.

At the same time, however, it lead to a highly significant increase in blood lactate levels (+42.59%) after the execution of vertical jump test (p <0.05). In contrast to what the initially discussed hypothesis would suggest, though, this increase in lactate was not accompanied by significant increases in serum CK levels of the athletes (see Figure 4).
Figure 4: On average, the increase in CK was even lower in the caffeine trial - albeit not significantly (Ribiero. 2015).
So what does that mean? Well, the most obvious answer certainly is that using caffeine to boost your performance beyond "natural limits" is not going to increase your risk of rhabdomiolysis. On the other hand, the study doesn't say anything about the effects on the central nervous system and whether your CNS, not your muscle, could be overtaxed by "going beyond failure" with caffeine.

The potential negative effects of chronic caffeine consumption on the central nervous is a problem I've mentioned in the red box and discussed in previous articles about caffeine.

Unfortunately, this problem has not been sufficiently studied, yet. So, if you're looking for a supplement related topic for your master thesis, boys and girls, the effects of chronic pre-workout caffeine consumption at different dosages on the central nervous system could be just the topic you've been looking for ;-) | Comment on Facebook!
References:
  • Lang, K., and E. B. LaFountaine. "Effects of caffeine as an ergogenic aid on weight lifting regimes in male collegiate athletes." International journal of exercise science: Conference proceedings. vol. 12. no. 1. 2015.
  • Thomas, Gabrielle. Is coffee an effective pre-workout drink?–The effects of ingesting naturalistic doses of caffeine on one-repetition maximum muscular strength and muscular endurance in females. Diss. Cardiff Metropolitan University, 2015.
  • Ribiero, et al. "Caffeine attenuates decreases in leg power without increased muscle damage." Journal of Strength and Conditioning Research (2016): Publish Ahead of Print | DOI: 10.1519/JSC.0000000000001332
  • Trevino, Michael A., et al. "Acute Effects of Caffeine on Strength and Muscle Activation of the Elbow Flexors." The Journal of Strength & Conditioning Research 29.2 (2015): 513-520.

Jumat, 18 Desember 2015

Two-A-Day Training - That's Bogus, Right? No - Increased Fat Oxidation in Endurance, 2.4x Higher Max. Volume, 2.6x Higher Time to Exhaustion in Resistance Training Study

If you feel totally wasted after every workout, I have bad news for you. In the two-a-day studies at hand the rest between the first and second workout was only 2h! Not exactly much time to recover, but the idea is to "train low" (on glycogen) on the second workout.
It sounds like madness or something for the "enhanced" athletes, but an older scientific study I recently dug out, accidentally, says that "training twice every second day may be superior to daily training" (Hansen. 2005). When I tried to learn more about this topic, though, I had to realize that the evidence is scarce. Similar results have been presented by Yeo et al (2008), though, albeit for trained triathletes and cycling.

In their study, Yeo and colleagues determined the effects of a cycle training program in which selected sessions were performed with low muscle glycogen content on training capacity and subsequent endurance performance, whole body substrate oxidation during submaximal exercise, and several mitochondrial enzymes and signaling proteins with putative roles in promoting training adaptation.
Overtraining can obviously still be an issue | Learn how to check your training status:

Heart Rate Variablity (HRV)

ABEL Sports Test + More

Overtraining & Undereating

Calculate your Energy Intake!

Overtraining W/ Only 25min/day?

Reinvent Your Training!
Now, the interesting thing about Yeo's study and the reason I want to discuss their results first is that the scientists from the School of Medical Sciences at the RMIT University in Victoria, Australia used trained subjects - seven endurance-trained cyclists/triathletes who were used to training daily anyway. During the three week study period, however, the subjects had to stick to one of the following training schedules:
  • Daily training (Daily - aka "High") - In this group the subjects alternated between 100-min steady-state aerobic rides (AT) one day, followed by a high-intensity interval training session (HIT; 8x5 min at maximum self-selected effort) the next day.
  • Twice every second day training (Two-A-Day - aka "Low") - Subject who had been randomly assigned to this group performed the AT, first, then 1–2 h later, the HIT. 
Forty-eight hours before and after the first and last training sessions, all subjects completed a 60-min steady-state ride (60SS) followed by a 60-min performance trial. Muscle biopsies were taken before and after 60SS, and rates of substrate oxidation were determined throughout this ride and the results were... well, let's say interesting:
Figure 1: Markers of fact glycogen use and fat oxidation during steady state exercise after 3 weeks of training (Yeo. 2008)
As you can see markers of mytochondrial beta oxidation (citrate synthase), as well as the glycogen concentrations and whole body fat oxidation during the 60 minute steady state ride pre-/post-test increased exclusively in the "two-a-day" group. That's a relevant results, even though the increase in cycling performance improved by 10% in both Low and High and the performance during the HIIT trials, which were performed after the aerobic rides, suffered in the LOW, i.e. the "Two-a-Day" arm o the study (see Figure 2, right).
Figure 2: During the training sessions the HIIT performance is initally lower, but even then the increased capacity to oxidize fat and thus ability to spare gluocose pays off in slowly increasing performance markers (no sign. difference anymore) after only 7 HIIT sprints - during a race the fat oxidation boost (right) may be even more important (Yeo. 2008)
Why's that beneficial? Well, while it is not relevant for short bouts of HIIT, the significant increase in fat oxidation during the exercise test (see Figure 2, right) indicates that, the subjects' ability to use fuel as substrate during steady state, as well as longer interval rides increased significantly. The spared glycogen may then, during a longer race, for example, decide victory and defeat when the glycogen depleted every-day trainer cannot keep up with the glycogen sparing two-a-day every other day trainer during a sprint at the end of a race.
Want to learn more? At this point you may be reminded of a previous article of mine with the telling title "8x Increase in "Mitochondria Building" Protein PGC1-Alpha W/ Medium Intensity Exercise in Glycogen Depleted Elite(!) Cyclists: Training Revolution or Recipe for Disaster?". If not, I suggest you head back and read it now!
The obvious question that's probably preying on your minds already is: How on earth does that relate to strength training, bro? Well, let's see... so, in the strength training study by Hansen, et al., the authors actually speculated to observe an effect as it was observed in the study I discuss in the article I referenced in the red box, i.e.  that "training at a low muscle glycogen content [during a second workout on the same day] would enhance training adaptation" (Hansen. 2005). Therefore, the Hansen et al performed a study in which seven healthy untrained men performed knee extensor exercises with one leg trained in a two-a-day fashion (2h rest between the 1h sessions), the other one in everyday. Luckily, the study duration in this study was 10 and not just 3 weeks.

Against that background it is not surprising that the training load increased significantly. Since the latter has little to do with the mitochondria, it is also not that surprising that the increase in maximal workload was identical for the two legs. What may be surprising for those who think that training twice a day would be bogus, however, is that the time until exhaustion and total volume during the post-test was "markedly more increased" in the leg that was trained twice a day, albeit only every other day vs. the one that was trained daily, but only once (see Figure 3).
Figure 3: Relative performance increases from pre- to post-test (left) and glycogen levels before and after exhausting bouts of knee extensor exercises (right) | high = daily training, low = twice a day, but only every other day (Hansen. 2005).
Just like in the previously cited cylcling study by Yea et al, the effect may be attributed to (a) increased resting muscle glycogen and (b) higher activities of the mitochondrial enzyme 3-hydroxyacyl-CoA dehydrogenase and citrate synthase which are both involved in the oxidation of fat in the mitochondria of your muscle.
"Just One More Set" (1/2): Metabolic Response to 10,000kg vs. 20,000kg Regimen. EPOC: Do Reps and Loads Both Figure? And What About Elite Athletes Do They Need More? Find answers to these questions, here!
Bottom line: While it should be obvious that (a) further research is necessary and (b) the benefits of two-a-day training will depend on your training goals, the (older) studies presented in this article clearly support what Hansen et al phrase like this: "training twice every second day may be superior to daily training" (Hansen. 2005).

Ok, while the benefits for cyclists are obvious, it will have to be proven that the additional one or two reps or the extra high intensity set you may be able to do due to the improvements in glycogen sparing fatty oxidation will actually increase your muscle gains, but the mere possibility that training twice a day every other day could be better than training everyday, which is something I see people do at the gym regularly, is intriguing, isn't it? Comment!
References:
  • Hansen, Anne K., et al. "Skeletal muscle adaptation: training twice every second day vs. training once daily." Journal of Applied Physiology 98.1 (2005): 93-99.
  • Yeo, Wee Kian, et al. "Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens." Journal of Applied Physiology 105.5 (2008): 1462-1470.