Tampilkan postingan dengan label deadlift. Tampilkan semua postingan
Tampilkan postingan dengan label deadlift. Tampilkan semua postingan

Jumat, 26 Februari 2016

Mo, We, Fr - Sequence of Hypertrophy, Power & Strength Will Up Your Gains on the Big Three (Squat, Bench, Deadlift)

Squat, bench press, deadlift - All major three benefit from the right order in your daily undulating periodization program (DUP) - This is how it works...
As a SuppVersity reader you are familiar with the term "undulating periodization". In contrast to regular periodization schemes, undulating schemes will have you train in different rep ranges on a weekly or - as in the latest study by Zourdos et al. (2016), even daily (as in every workout) basis.

As Zourdos, et al. point out, the available research shows mixed results with the respect to the efficacy of regular linear vs. undulating periodization schemes. While some studies report no differences among training models (Baker. 1994; Buford. 2007; Kok. 2009), others suggest that the more frequent changes of the rep ranges in an undulating periodization scheme are more advantageous for strength development (Miranda. 2011; Monteiro. 2009; Peterson. 2008; Prestes. 2009; Rhea. 2002).
The method used int he study is an alternative to classic periodization schemes.

30% More on the Big Three: Squat, DL, BP!

Mix Things Up to Make Extra-Gains

Linear vs. Undulating Periodizationt

12% Body Fat in 12 Weeks W/ Periodizatoin

Detraining + Periodization - How to?

Tapering 101 - Learn How It's Done!
When you take a closer look at the data, one of the potential confounding factors that emerges is the subjects' training experience with no significantly distinct advantages in untrained or recreationally trained individuals (Baker. 1994; Buford. 2007; Herrick. 1999; Kok. 2009) and a significantly greater degree of muscular strength development when using a DUP design compared with LP (Miranda. 2011; Monteiro. 2009; Peterson. 2008; Prestes. 2009; Rhea. 2002). An alternative difference, the effects of which have not been investigated yet, are programming variations within the daily undulating periodization (DUP) framework in experienced athletes. More specifically, ...
"[i]t is reasonable to speculate that the program design and practical implementation of DUP can be further optimized. A possible area of improvement in the DUP design is the temporal configuration of hypertrophy-centric, strength-centric, and power/speedcentric sessions within a given week. Previous research demonstrating the effectiveness of DUP over LP implemented a weekly training order of hypertrophy-centric, strength-centric, and power-centric bouts (e.g., hypertrophy training on Monday, strength training on Wednesday, and power training on Friday) (Peterson. 2008). However, this design calls for a strength-centric bout to be performed just 48–72 hours after a hypertrophy-centric bout each week. Hypertrophy training is characterized by sessions of high volume of exercise, a condition shown to result in heightened muscle damage, and compromised neuromuscular performance for up to 48-hour postexercise (Flann. 2011; Rhea. 2002b). In the context of traditional DUP formatting, this may conceivably hinder performance (i.e., total volume [TV] performed) during the subsequent strength-centric bout, thereby precluding strength athletes from maximizing their training potential" (Zourdos. 2016).
To investigate the potential negative effects of hypertrophy training induced muscle damage on the subsequent strength training bout, Zourdos et al. (2016) compared the effects of a modified DUP format with a weekly training order of hypertrophy-centric (H), power-centric (P), and strength-centric bouts (S | H-P-S) on total training volume (i.e., sets 3 reps 3 weightlifted) and muscular strength in comparison with a traditional DUP model (i.e., HSP) in resistance-trained men for 6 weeks (see Figure 1).
Table 1: Experimental training periodization - Traditional Daily Undulating Periodization (DUP) involves a weekly training order of hypertrophy, strength, and then power focused bouts (HSP). Modified DUP involves a weekly training order of hypertrophy, power, and then strength focused bouts. Each protocol spans 6 weeks and consists of three exercises: back squat, bench press, and deadlift (only performed during strength-centric bouts | Zourdos. 2016).
In order to find out what could be responsible for any potentially observable differences in their study, the authors also tested the total training volume as measured by the total poundage the subjects moved during the strength sessions, in which the subjects trained to failure, and the temporal secretion patterns of testosterone and cortisol in response to both DUP training programs.
Understanding the benefits: Since I've already received questions about how the benefits came about, let me briefly elaborate on the idea of HPS vs. HSP. The notion was that <48h of recovery, from Monday to Wednesday, after a higher volume hypertophy (H) training program would not be enough to hit personal bests on the strength day on which - and that's important - the subjects had to perform each set to full failure. If you train to failure, recovery is a crucial determinant of the number of reps you will master and thus the total volume. The latter, in turn, appears to be one of the central determinants of the strength / hypertrophy response to resistance training, which in turn makes you stronger and will allow you to lift even more weight. So, postponing the strength (S) day to Friday instead of Wednesday will have both, direct and indirect beneficial effects on your gains.
In that, Zourdos, et al. hypothesized that "HPS (i.e., modified DUP) would yield greater volume and strength gains in the 3 exercises performed during training" (Zourdos. 2016).
Figure 1: Rel. change in strength and abs. Cohen’s d effect size in HSP and HPS groups (N = 9 for both; Zourdos. 2016).
As you can see in Figure 1, the scientists were right, the effects of the otherwise identical training protocols, which involved 3 exercises (squats + bench presses in every, deadlifts only in the strength sessions) during training, of which the subjects did ..
  • 5 sets of 8 reps at 75% 1RM during H = hypertrophy,
  • 5 sets of 1 rep at 80%-90% increased every 2 weeks during P = power and
  • 3 sets to failure at 85% during S = strength raining
differed significantly, with a statistical significant advantage on the bench and meaningfully higher effect sizes for all three exercises in the HPS group - an effect that could be mediated by the increased total volume and Wilk's coefficient, a measure that can be used to measure the strength of a powerlifter against other powerlifters despite the different weights of the lifters (see Figure 2).
Figure 2: Rel. change in powerlifting volume and Will's coefficient + effect sizes in HSP and HPS groups (Zourdos. 2016).
An alternative explanation of which previous studies do yet not confirm that it may explain the difference is the differential cortisol / testosterone response (learn more) - in view of the fact that the difference you see in Table 2 is not statistically significant, though, it is even more unlikely that the meager difference in testosterone and cortisol the scientists observed had any effect.
Table 1: Pre- and post-training serum testosterone and cortisol level (Zourdos. 2016).
Against that background, we're back to the "usual" subject, when it comes to determinants of the degree of adaptation to resistance training: volume - the same parameter reviews and studies by Schoenfeld et al. (2010; 2011; 2014) have previously singled out as the (most important) determinant of training success.
Again: The differences in the cortisol / testosterone levels were not just statistically non-significant. At least the latter has also been shown to have no effect on your gains, anyways | more.
Bottom line: As the authors point out, "[t]hese findings demonstrate 2 important factors in accordance with the previous literature: (a). Total training volume seems to be a determinant of increased strength performance, and (b). Daily undulating periodization is an effective model to
enhance 1RM strength during short-term training protocols in well-trained men" (Zourdos. 2016).

Zourdos et al. are yet also right to point out that few training studies exist regarding various training designs. This alone warrants further "research examining further DUP configurations is necessary" - studies in less trained individuals, and studies investigating the size gains, too could after all both yield different results for the same H-S-P to H-P-S comparison | Comment on Facebook!
References:
  • Baker, Daniel, Greg Wilson, and Robert Carlyon. "Periodization: The Effect on Strength of Manipulating Volume and Intensity." The Journal of Strength & Conditioning Research 8.4 (1994): 235-242.
  • Buford, Thomas W., et al. "A comparison of periodization models during nine weeks with equated volume and intensity for strength." The Journal of Strength & Conditioning Research 21.4 (2007): 1245-1250.
  • Flann, Kyle L., et al. "Muscle damage and muscle remodeling: no pain, no gain?." The Journal of experimental biology 214.4 (2011): 674-679.
  • Herrick, Andrew B., and William J. Stone. "The Effects of Periodization Versus Progressive Resistance Exercise on Upper and Lower Body Strength in Women." The Journal of Strength & Conditioning Research 10.2 (1996): 72-76.
  • Kok, Lian-Yee, Peter W. Hamer, and David J. Bishop. "Enhancing muscular qualities in untrained women: linear versus undulating periodization." Med Sci Sports Exerc 41.9 (2009): 1797-807.
  • Miranda, Fabrício, et al. "Effects of linear vs. daily undulatory periodized resistance training on maximal and submaximal strength gains." The Journal of Strength & Conditioning Research 25.7 (2011): 1824-1830.
  • Monteiro, Artur G., et al. "Nonlinear periodization maximizes strength gains in split resistance training routines." The Journal of Strength & Conditioning Research 23.4 (2009): 1321-1326.
  • Peterson, Mark D., et al. "Undulation training for development of hierarchical fitness and improved firefighter job performance." The Journal of Strength & Conditioning Research 22.5 (2008): 1683-1695.
  • Prestes, Jonato, et al. "Comparison of linear and reverse linear periodization effects on maximal strength and body composition." The Journal of Strength & Conditioning Research 23.1 (2009): 266-274.
  • Rhea, Matthew R., et al. "A comparison of linear and daily undulating periodized programs with equated volume and intensity for strength." The Journal of Strength & Conditioning Research 16.2 (2002a): 250-255.
  • Rhea, Matthew R., et al. "Three sets of weight training superior to 1 set with equal intensity for eliciting strength." The Journal of Strength & Conditioning Research 16.4 (2002b): 525-529.
  • Schoenfeld, Brad J. "The mechanisms of muscle hypertrophy and their application to resistance training." The Journal of Strength & Conditioning Research 24.10 (2010): 2857-2872.
  • Schoenfeld, Brad. "The use of specialized training techniques to maximize muscle hypertrophy." Strength & Conditioning Journal 33.4 (2011): 60-65.
  • Schoenfeld, Brad J., et al. "Effects of different volume-equated resistance training loading strategies on muscular adaptations in well-trained men." The Journal of Strength & Conditioning Research 28.10 (2014): 2909-2918.

Rabu, 25 November 2015

GYM-Science Update: Bands Aid W/ Deadlifts? 16x1 or 4x4 for HIIT? Kettlebell HIIT Workout Better Than HIIT-Cycling?

Deadlifts w/ bands as they were done in the Galpin study (original photo from Galpin's 2015 study | see below).
Time for a news-quickie with the latest science to use at the gym - either for your workouts or just to impress the bros with your knowledge. I mean, who else reads and understands all the latest papers in the #1 strength and conditional journal on earth? Well, you do... ok, you read my laymen summaries, but your bros don't have to know that, do they?

Ok, that's enough of the pseudo-comedian warm-up, let's deadlift the first scientific paper... oh,yeah: Actually the paper is about deadlifting, deadlifting with resistance bands as it is shown in the photo on the right, where a subject performs the deadlift on a force plate.
Read more about exercise-related studies at the SuppVersity

Tri- or Multi-Set Training for Body Recomp.?

Aug '15 Ex.Res. Upd.: Nitrate, Glycogen, and ...

Pre-Exhaustion Exhausts Your Growth Potential

Full ROM ➯ Full Gains - Form Counts!

BFR-Preconditio- ning Useless for Weights?

Study Indicates Cut the Volume Make the Gains!
  • Deadlift with bands for power and speed - Galpin et al. (2015) investigated how using bands while deadlifting at different loads, namely 60 and 85% of one's individual 1RM, i.e. the maximal weight you can lift for exactly one perfect rep, would influence the power and velocity at which twelve trained men (age: 24.08 ± 2.35 years, height: 175.94 ± 5.38 cm, mass: 85.58 ± 12.49 kg) with deadlift 1 repetition maxima (1RM) of 188.64 ± 16.13 kg pulled the weight off the floor.

    The results of the study show that there were significant peak (yet not relative) power changes irrespective of whether only 15% of the total resistance (group B1) or 35% of the total resistance (group B1) came from the bands (vs. the actual weight).
    Figure 1: Relative changes in power and bar velocity (compared to training w/out bands = control); * denotes sign. difference to control, ** denotes significant difference to control and light bands (Galpin. 2015)
    The effect became even more pronounced and extended from peak to average power, when the subjects used the heavier (85% 1RM) weights. In this condition using bands lead to greater peak and relative power production and lowered the velocity significantly compared to the control condition in which the subjects lifted at the same total level of resistance, albeit without bands (all values in Figure 1 are relative differences).

    For trainees the data in Figure 1 could be highly relevant, because it indicates that heavy bands should be used, when "prescribing the deadlift for speed or power, but not maximal force" (Galpin. 2015). If that's not you, i.e. you're not training for speed and power, but e.g. for size, future long(er)-term studies will have to show whether using bands makes a difference with respect to this study training goal.
  • Interval length, can you really pick whichever suits your best? Even though a recent study by Wesley Tucker et al. (2015) shows that the rate of perceived exertion, as well as the mean heart rate of 14 recreationally active and thus not exactly jacked males who participated in their latest study were identical on 4x4 and 16x1 high intensity interval protocols (i.e. 4 intervals à 4 minutes vs. 16 intervals a 1 minute | see Figure 2), seasoned SuppVersity readers will probably remember that previous studies showed highly relevant differences in the long(er) term effects which obviously cannot be measured in an acute phase study like the one at hand.
    Figure 2: Illustration of the two HIIT protocols, incl. warm-up and cool down on cycle ergometers. White boxes are intervals during which the subjects were supposed to exercise at 90% of their peak heart rate (during the 16x1 protocol this was not achieved by all study participants in the latter intervals, though | Tucker. 2015).
    To be more specific, previous studies on high intensity interval training suggested that athletes who want to increase their VO2 max benefit more from fewer longer intervals, while "Mr. and Mrs. Average" could be better off improving their body composition and metabolic rate with a higher number of short intervals (even as short as 15 seconds in the Tabata protocol). Against that background and in order to explain or contradict the previous findings, it may be worth to consider other study outcomes in Tucker et al. (2015). Study outcomes which did differ. The total energy expenditure, for example, was 19% higher during the 16x1 protocol (p < 0.001) which is in line with the previously referenced recommendation of short intervals for people who are trying to lose weight.
    Figure 3: VO2, heart rate, and energy expenditure during the two HIIT protocols (watch the units! I converted them to be able to put all data into the same graph | Tucker. 2015).
    The VO2 uptake, as well as the maximal heart rates, which could be of interest for endurance athletes, on the other hand, were higher in the 4x4 protocol - a finding that would likewise support the previously voiced recommendation that (endurance) athletes should torture themselves with long(er) intervals to trigger further adaptations in VO2max and heart rate at a given power output.

    Overall, the study at hand will thus not revolutionize your training, but if you haven't read the previous SuppVersity articles, you may still have gotten some new insights into how you may want to adapt your HIIT training in the future.
  • Kettlebell or cycle ergometer? Which do you chose for your HIIT sessions? I've written about kettlebell swings as muscle builders before and I've also hinted at the possibility of using the "bells" for your HIIT workouts. Now, a recent study by Williams and Kraemer shows that
    "[kettlebell high intensity interval training aka] KB-HIIT may [even] be more attractive and sustainable than [sprint interval cycling aka] SIC and can be effective in stimulating cardiorespiratory and metabolic responses that could improve health and aerobic performance" (Williams. 2015).
    The purpose of the study was - you probably already guessed it - to determine the effectiveness of a novel exercise protocol we developed for kettlebell high-intensity interval training (KB-HIIT) in comparison to the classic, standard sprint interval cycling (SIC) exercise protocol most people associate with equipment-based HIIT sessions. To this ends, the researchers from the Southeastern Louisiana University had eight "very active" young men (mean age 21.5 years; body fat 18.52 +/-3.04%, fat free mass 67.44 kg of a total weight of 82.95 kg) complete two 12-minute sessions of KB-HIIT and SIC in a counterbalanced fashion.
    Figure 4: Overview of the KB-HIIT workout (my illustration).
    "In the KB-HITT session [exercises see Figure 4, mean weight depending on exercise and subject 10-22 kg], 3 circuits of 4 exercises were performed using a Tabata regimen.

    In the SIC session, three 30-second sprints were performed, with 4 minutes of recovery in between the first 2 sprints and 2.5 minutes of recovery after the last sprint" (Williams. 2015)
    The study's within-subjects' design over multiple time points allowed Williams and Kraemer to compare the oxygen consumption, the respiratory exchange ratio (RER, a marker of the ratio of fat to carbohydrates that is used as fuel during the workout), the tidal volume (TV, the volume of air that is inspired or expired in a single breath during regular breathing), the breathing frequency (f), the subject's minute ventilation (VE), caloric expenditure rate (kcal/min), and their heart rate (HR) on an individual basis between the exercise protocols. In conjunction with the total caloric expenditure which was likewise measured / calculated and compared. The total amount of data the authors collected was thus quite large.
    Figure 5: Mean total energy expenditure in kcal during the KB and SIC sessions (Williams. 2015)
    Significant inter-group differences were found for VO2, RER, TV and total energy expenditure, with VO2 and total energy expenditure being higher and TV and RER being lower in the KB-HIIT compared with the cycle ergometer HIIT protocol. For f, VE, the energy expenditure per minute and the heart rate, there were no general inter-group differences, but "only" significant group × time interactions. Practically speaking, this means that they changed differently over the course of the whole protocol and are thus maybe relevant for certain athletes, yet not for the general public.

    Overall, the William's and Kraemer's study does therefore support the notion that doing kettlebell HIIT workouts is probably at least on par with the classic cycling HIIT sessions. In view of the increased total caloric expenditure and the lower RER, which signifies a significantly higher fat oxidation during the workout, it is even possible that KB-HIIT would be the better choice for dieters than doing HIIT on a cycle ergometer. Since there is no direct link between fat oxidation and/or energy expenditure during workouts and fat loss, however, long(er)-term studies are necessary to find out whether doing KB-HIIT is in fact more than a equivalent and for many of you maybe funnier alternative to doing HIIT on a cycle ergometer. 
Block Periodization - Training revolution or simple trick? This is what we have to ask ourselves in view of the results of a previously discussed study from 2014 | Read the full SV-Classic article here!
Bottom line: That's it for today; so I suggest you take what you learned, pack it in your gymbag and go and impress your bros at the gym ;-) I am just kiddin'... actually I hope that you can really use some of the information in today's installment of the SuppVersity Short News to make your workouts more productive, more enjoyable and/or simply more versatile.

Personally, I will probably give the KB-HIIT workout a try,... and that even though I expect it to be much harder than cycling which is something I am already used to. But hey, isn't that what training is all about? You have to challenge your body - even if that means conquering your weaker self.

I mean, we all know that as soon as you are staying within the cozy comfort zone of doing the same exercises with the same weights workout after workout your progress will stall; and unless you are one of those people who hit the gym to be able to talk to their athletic friends, that's certainly nothing you should aim for | Comment on Facebook!
References:
  • Galpin, AJ, Malyszek, KK, Davis, KA, Record, SM, Brown, LE, Coburn, JW, Harmon, RA, Steele, JM, and Manolovitz, AD. Acute effects of elastic bands on kinetic characteristics during the deadlift at moderate and heavy loads. J Strength Cond Res 29(12): 3271–3278, 2015
  • Tucker, WJ, Sawyer, BJ, Jarrett, CL, Bhammar, DM, and Gaesser, GA. Physiological responses to high-intensity interval exercise differing in interval duration. J Strength Cond Res 29(12): 3326–3335, 2015
  • Williams, BM and Kraemer, RR. Comparison of cardiorespiratory and metabolic responses in kettlebell high-intensity interval training versus sprint interval cycling. J Strength Cond Res 29(12): 3317–3325, 2015