Tampilkan postingan dengan label bands. Tampilkan semua postingan
Tampilkan postingan dengan label bands. Tampilkan semua postingan

Rabu, 25 November 2015

GYM-Science Update: Bands Aid W/ Deadlifts? 16x1 or 4x4 for HIIT? Kettlebell HIIT Workout Better Than HIIT-Cycling?

Deadlifts w/ bands as they were done in the Galpin study (original photo from Galpin's 2015 study | see below).
Time for a news-quickie with the latest science to use at the gym - either for your workouts or just to impress the bros with your knowledge. I mean, who else reads and understands all the latest papers in the #1 strength and conditional journal on earth? Well, you do... ok, you read my laymen summaries, but your bros don't have to know that, do they?

Ok, that's enough of the pseudo-comedian warm-up, let's deadlift the first scientific paper... oh,yeah: Actually the paper is about deadlifting, deadlifting with resistance bands as it is shown in the photo on the right, where a subject performs the deadlift on a force plate.
Read more about exercise-related studies at the SuppVersity

Tri- or Multi-Set Training for Body Recomp.?

Aug '15 Ex.Res. Upd.: Nitrate, Glycogen, and ...

Pre-Exhaustion Exhausts Your Growth Potential

Full ROM ➯ Full Gains - Form Counts!

BFR-Preconditio- ning Useless for Weights?

Study Indicates Cut the Volume Make the Gains!
  • Deadlift with bands for power and speed - Galpin et al. (2015) investigated how using bands while deadlifting at different loads, namely 60 and 85% of one's individual 1RM, i.e. the maximal weight you can lift for exactly one perfect rep, would influence the power and velocity at which twelve trained men (age: 24.08 ± 2.35 years, height: 175.94 ± 5.38 cm, mass: 85.58 ± 12.49 kg) with deadlift 1 repetition maxima (1RM) of 188.64 ± 16.13 kg pulled the weight off the floor.

    The results of the study show that there were significant peak (yet not relative) power changes irrespective of whether only 15% of the total resistance (group B1) or 35% of the total resistance (group B1) came from the bands (vs. the actual weight).
    Figure 1: Relative changes in power and bar velocity (compared to training w/out bands = control); * denotes sign. difference to control, ** denotes significant difference to control and light bands (Galpin. 2015)
    The effect became even more pronounced and extended from peak to average power, when the subjects used the heavier (85% 1RM) weights. In this condition using bands lead to greater peak and relative power production and lowered the velocity significantly compared to the control condition in which the subjects lifted at the same total level of resistance, albeit without bands (all values in Figure 1 are relative differences).

    For trainees the data in Figure 1 could be highly relevant, because it indicates that heavy bands should be used, when "prescribing the deadlift for speed or power, but not maximal force" (Galpin. 2015). If that's not you, i.e. you're not training for speed and power, but e.g. for size, future long(er)-term studies will have to show whether using bands makes a difference with respect to this study training goal.
  • Interval length, can you really pick whichever suits your best? Even though a recent study by Wesley Tucker et al. (2015) shows that the rate of perceived exertion, as well as the mean heart rate of 14 recreationally active and thus not exactly jacked males who participated in their latest study were identical on 4x4 and 16x1 high intensity interval protocols (i.e. 4 intervals à 4 minutes vs. 16 intervals a 1 minute | see Figure 2), seasoned SuppVersity readers will probably remember that previous studies showed highly relevant differences in the long(er) term effects which obviously cannot be measured in an acute phase study like the one at hand.
    Figure 2: Illustration of the two HIIT protocols, incl. warm-up and cool down on cycle ergometers. White boxes are intervals during which the subjects were supposed to exercise at 90% of their peak heart rate (during the 16x1 protocol this was not achieved by all study participants in the latter intervals, though | Tucker. 2015).
    To be more specific, previous studies on high intensity interval training suggested that athletes who want to increase their VO2 max benefit more from fewer longer intervals, while "Mr. and Mrs. Average" could be better off improving their body composition and metabolic rate with a higher number of short intervals (even as short as 15 seconds in the Tabata protocol). Against that background and in order to explain or contradict the previous findings, it may be worth to consider other study outcomes in Tucker et al. (2015). Study outcomes which did differ. The total energy expenditure, for example, was 19% higher during the 16x1 protocol (p < 0.001) which is in line with the previously referenced recommendation of short intervals for people who are trying to lose weight.
    Figure 3: VO2, heart rate, and energy expenditure during the two HIIT protocols (watch the units! I converted them to be able to put all data into the same graph | Tucker. 2015).
    The VO2 uptake, as well as the maximal heart rates, which could be of interest for endurance athletes, on the other hand, were higher in the 4x4 protocol - a finding that would likewise support the previously voiced recommendation that (endurance) athletes should torture themselves with long(er) intervals to trigger further adaptations in VO2max and heart rate at a given power output.

    Overall, the study at hand will thus not revolutionize your training, but if you haven't read the previous SuppVersity articles, you may still have gotten some new insights into how you may want to adapt your HIIT training in the future.
  • Kettlebell or cycle ergometer? Which do you chose for your HIIT sessions? I've written about kettlebell swings as muscle builders before and I've also hinted at the possibility of using the "bells" for your HIIT workouts. Now, a recent study by Williams and Kraemer shows that
    "[kettlebell high intensity interval training aka] KB-HIIT may [even] be more attractive and sustainable than [sprint interval cycling aka] SIC and can be effective in stimulating cardiorespiratory and metabolic responses that could improve health and aerobic performance" (Williams. 2015).
    The purpose of the study was - you probably already guessed it - to determine the effectiveness of a novel exercise protocol we developed for kettlebell high-intensity interval training (KB-HIIT) in comparison to the classic, standard sprint interval cycling (SIC) exercise protocol most people associate with equipment-based HIIT sessions. To this ends, the researchers from the Southeastern Louisiana University had eight "very active" young men (mean age 21.5 years; body fat 18.52 +/-3.04%, fat free mass 67.44 kg of a total weight of 82.95 kg) complete two 12-minute sessions of KB-HIIT and SIC in a counterbalanced fashion.
    Figure 4: Overview of the KB-HIIT workout (my illustration).
    "In the KB-HITT session [exercises see Figure 4, mean weight depending on exercise and subject 10-22 kg], 3 circuits of 4 exercises were performed using a Tabata regimen.

    In the SIC session, three 30-second sprints were performed, with 4 minutes of recovery in between the first 2 sprints and 2.5 minutes of recovery after the last sprint" (Williams. 2015)
    The study's within-subjects' design over multiple time points allowed Williams and Kraemer to compare the oxygen consumption, the respiratory exchange ratio (RER, a marker of the ratio of fat to carbohydrates that is used as fuel during the workout), the tidal volume (TV, the volume of air that is inspired or expired in a single breath during regular breathing), the breathing frequency (f), the subject's minute ventilation (VE), caloric expenditure rate (kcal/min), and their heart rate (HR) on an individual basis between the exercise protocols. In conjunction with the total caloric expenditure which was likewise measured / calculated and compared. The total amount of data the authors collected was thus quite large.
    Figure 5: Mean total energy expenditure in kcal during the KB and SIC sessions (Williams. 2015)
    Significant inter-group differences were found for VO2, RER, TV and total energy expenditure, with VO2 and total energy expenditure being higher and TV and RER being lower in the KB-HIIT compared with the cycle ergometer HIIT protocol. For f, VE, the energy expenditure per minute and the heart rate, there were no general inter-group differences, but "only" significant group × time interactions. Practically speaking, this means that they changed differently over the course of the whole protocol and are thus maybe relevant for certain athletes, yet not for the general public.

    Overall, the William's and Kraemer's study does therefore support the notion that doing kettlebell HIIT workouts is probably at least on par with the classic cycling HIIT sessions. In view of the increased total caloric expenditure and the lower RER, which signifies a significantly higher fat oxidation during the workout, it is even possible that KB-HIIT would be the better choice for dieters than doing HIIT on a cycle ergometer. Since there is no direct link between fat oxidation and/or energy expenditure during workouts and fat loss, however, long(er)-term studies are necessary to find out whether doing KB-HIIT is in fact more than a equivalent and for many of you maybe funnier alternative to doing HIIT on a cycle ergometer. 
Block Periodization - Training revolution or simple trick? This is what we have to ask ourselves in view of the results of a previously discussed study from 2014 | Read the full SV-Classic article here!
Bottom line: That's it for today; so I suggest you take what you learned, pack it in your gymbag and go and impress your bros at the gym ;-) I am just kiddin'... actually I hope that you can really use some of the information in today's installment of the SuppVersity Short News to make your workouts more productive, more enjoyable and/or simply more versatile.

Personally, I will probably give the KB-HIIT workout a try,... and that even though I expect it to be much harder than cycling which is something I am already used to. But hey, isn't that what training is all about? You have to challenge your body - even if that means conquering your weaker self.

I mean, we all know that as soon as you are staying within the cozy comfort zone of doing the same exercises with the same weights workout after workout your progress will stall; and unless you are one of those people who hit the gym to be able to talk to their athletic friends, that's certainly nothing you should aim for | Comment on Facebook!
References:
  • Galpin, AJ, Malyszek, KK, Davis, KA, Record, SM, Brown, LE, Coburn, JW, Harmon, RA, Steele, JM, and Manolovitz, AD. Acute effects of elastic bands on kinetic characteristics during the deadlift at moderate and heavy loads. J Strength Cond Res 29(12): 3271–3278, 2015
  • Tucker, WJ, Sawyer, BJ, Jarrett, CL, Bhammar, DM, and Gaesser, GA. Physiological responses to high-intensity interval exercise differing in interval duration. J Strength Cond Res 29(12): 3326–3335, 2015
  • Williams, BM and Kraemer, RR. Comparison of cardiorespiratory and metabolic responses in kettlebell high-intensity interval training versus sprint interval cycling. J Strength Cond Res 29(12): 3317–3325, 2015

Jumat, 30 Oktober 2015

Chains & Bands Can Double Your 1RM Strength Gains on the Bench and in the Squat Rack, Meta-Analysis Shows

Dude, it won't suffice to just bring your chains to the gym to show them off, you will also have to attach them to the barbell before squatting and benching to see results... and bro, the science on the benefits of elastic bands is much more solid - even though they are not as "cool"!
I've written about the use of bands and chains in previous SuppVersity articles, but Miguel A. Soria-Gila recent paper is the first meta-analysis that aggregates the available data to answer the important question, whether the use of "variable resistance" training (VRT), as the use of bands and chains is usually referred to in the literature, is generally advisable, or if the existing positive results are nothing but outliers.

Now, from the headline of today's SuppVersity article you already know that Sotia-Gila's analysis yielded positive results, or as the authors have it: " Long-term VRT training using chains or elastic bands attached to the barbell emerged as an effective evidence-based method of improving maximal strength both in athletes with different sports backgrounds and untrained subjects."
Want to become stronger, bigger, faster and leaner? Periodize appropriately!

30% More on the Big Three: Squat, DL, BP!

Block Periodization Done Right

Linear vs. Undulating Periodizationt

12% Body Fat in 12 Weeks W/ Periodizatoin

Detraining + Periodization - How to?

Tapering 101 - Learn How It's Done!
What is particularly interesting, though, is whether the statistically significant benefits are practically relevant enough for you to consider bringing your chains and/or resistance bands to the gym.
Figure 1: Relative strength increase in bench press (BP), back squat (BSQ), leg press (LP) and squat (SQ) in response to regular and variable resistance training; if not indicated otherwise, the variable resistance training was done with bands, only the study by Ghigarelli, et al. compared bands to chains (Soria-Gila. 2015).
To answer this question we need both, the relative and absolute strength increases in both, the variable resistance training (VRT) and control groups of the four pertinent studies in the meta-analysis - data I've plotted for you in Figure 1 and 2.
Figure 2: Absolute increase in 1-RM strength (all values in kg) in the respective exercises (see Figure 1 for abbreviations) in the seven 7-week plus studies that were part of the meta-analysis (Soria-Gila. 2015).
In five of the studies (indexed with "(T)" in Figure 1) the subjects were trained individuals, in the studies by Anderson (basketball and hockey players + wrestlers), Cronin and McCurdy (baseball, Division I) the subjects actually had ~3 or even more years of training experience. The results of these studies may thus be of particular interest for the average SuppVersity reader of whom I know that he / she is not a total foreigner to gym. If we assume that they / you would see the same benfits, the extra-increases on the bench and in the squat would be:
  • An extra 5% increase in 1RM and thus 2x greater strength gains on the bench.
  • An extra 11% increase in 1RM and thus 2.6x greater strength gains for squats.
In relative terms the benefits you may achieve after only 10-13 weeks are thus quite impressive. But can the same be said for the absolute extra-gains? Soria-Gila et al. report an extra strength gain of 5.03 kg (95% confidence interval: 2.26–7.80 kg) for all studies and all exercises. If we, again, consider only the bench press and the squat and eliminate the studies with untrained participants, the absolute values are much smaller: 1.8 kg and 2.7 kg, respectively.
Are you looking for more ways to maximize your strength gains? Find out if training to failure or modifying your rest times can help in this SuppVersity article.
Variable resistance training for explosive gains? In relative terms, the effects are huge. Two-fold larger increases in 1-RM strength in trained subjects speak for themselves. The absolute strength gains, on the other hand, are - and that's typical for people who have been training for several years - relatively small. Accordingly, you should not expect to start gaining strength like a rookie again, when you incorporate bands (which are better researched than chains) in your training regimen. What you can expect, though, is that your progress will accelerate significantly. For the next 2-3 months this would mean that you may be able to add 4 kg to your bench instead of just 2 kg. That's not exactly earth-shatteringly much, but it's still a 100% increase in 1-RM strength and in my humble opinion worth the effort... no? | Comment on Facebook!
References:

  • Anderson, Corey E., Gary A. Sforzo, and John A. Sigg. "The effects of combining elastic and free weight resistance on strength and power in athletes." The Journal of Strength & Conditioning Research 22.2 (2008): 567-574.
  • Bellar, David M., et al. "The effects of combined elastic-and free-weight tension vs. free-weight tension on one-repetition maximum strength in the bench press." The Journal of Strength & Conditioning Research 25.2 (2011): 459-463.
  • Cronin, John, Peter Mcnair, and Robert Marshall. "The effects of bungy weight training on muscle function and functional performance." Journal of sports sciences 21.1 (2003): 59-71.
  • Ghigiarelli, Jamie J., et al. "The effects of a 7-week heavy elastic band and weight chain program on upper-body strength and upper-body power in a sample of division 1-AA football players." The Journal of Strength & Conditioning Research 23.3 (2009): 756-764.
  • McCurdy, Kevin, et al. "Comparison of chain-and plate-loaded bench press training on strength, joint pain, and muscle soreness in Division II baseball players." The Journal of Strength & Conditioning Research 23.1 (2009): 187-195.
  • Rhea, Matthew R., Joseph G. Kenn, and Bryan M. Dermody. "Alterations in speed of squat movement and the use of accommodated resistance among college athletes training for power." The Journal of Strength & Conditioning Research 23.9 (2009): 2645-2650.
  • Shoepe, Todd, et al. "The effects of 24 weeks of resistance training with simultaneous elastic and free weight loading on muscular performance of novice lifters." Journal of human kinetics 29 (2011): 93-106.
  • Soria-gila, Miguel A., et al. "Effects of variable resistance training on maximal strength: a meta-analysis." Journal Of Strength And Conditioning Research/National Strength & Conditioning Association (2015): Accepted article.