Tampilkan postingan dengan label ISSN15. Tampilkan semua postingan
Tampilkan postingan dengan label ISSN15. Tampilkan semua postingan

Senin, 05 Oktober 2015

Calculated Energy Requirements ±15% & More Off of True Resting Energy Expenditure | Genotyping May Help Maintain Muscle While Dieting -- ISSN'15 Research Review Issue #5

In view of the inaccuracy of the standard equations that are used to calculate our energy requirements we are approaching the age of the "misquantified self".
If I had to find a common theme in the studies discussed in this installment of the ISSN'15 Research Overview, I guess it would be "get lean and stay lean". If you asked for a common bottom line, it would be: It's complicated.

Complicated, because even though our genes appear to have a determining rule in what's the best diet for us, the "calories in vs. calories out" equation is eventually going to determine whether you are losing or gaining weight. That's problematic, not just because many of us have lost their inborn ability to match their energy intake to their individual requirements. It's also problematic in view of the increasing number of people who rely on the numbers of apps and fitness-trackers which are just as unreliable as the standard equations that were fed into the source code to calculate them.
Read more about ISSN and other studies at the SuppVersity

Vitargo, Red Bull, Creatine & More | ISSN'15 #1

Pump Supps & Synephrine & X | ISSN'15 #2

High Protein, Body Comp & X | ISSN'15 #3

Keto Diet Re- search Update | ISSN'15 #4

The Misquantified Self & More | ISSN'15 #5

BCAA, Cholos-trum, Probiotics & Co | ISSN'15 #6
  • Eating according to your genes may help you retain lean mass -- You will have noticed that the number of companies that do gene testing in order to tell you "exactly" what and how to eat is exploding lately. Unfortunately, the same cannot be said of research that would confirm that any of the test results people often pay several hundred dollars for are worth the paper they are printed on.

    Against that background, a recent study from the Texas A&M University comes quite handy for the shareholder value of said companies. The corresponding poster presentation at the ISSN Conference 2015 expanded on the results of a 2015 study by Coletta et al. (2015a), in which the researchers observed "that correctly matching diet type to some obesity-related genes promoted greater fat loss during the first 3 months of a diet and exercise intervention" (Coletta. 2015b). In the study at hand the researchers did now examine "whether these changes were observed following a 6-month diet and exercise training program" (ibid.).

    Over the course of the 6-months study, fifty sedentary, obese women (41.6 ± 12 yrs, 35.4 ± 8 kg/m²) who had been genotyped before the intervention, were either truly matched (T) to their diet group based on genotype (n = 28) or falsely matched (F) based on genotype (n = 22).
    Figure 1: Macronutrient composition of the diets (Coletta. 2015b).
    Irrespective of the group they were assigned to, all subjects consumed the same amount of energy (1,500 kcal/d), but with either a high or low ratio of carbohydrate:fat:protein percentages (see Figure 1). But the women didn't just eat less, they also had to perform a supervised circuit-style resistance-exercise program four days/week and followed a standardized walking program that consisted of 10,000 steps/day on three days/week. 
High carbohydrate diets for metabolic syndrome? A question of your genes - Study suggests that diets high in carbohydrate may not be appropriate for rs328 G carriers with the metabolic syndrome. In said study, two districts in Shanghai, China were randomly selected to be the intervention and control group, and patients (n=235) with metabolic syndrome within these two districts were selected based on a multistage sampling method.

"Three Days on Pasta, Muffin & Bread Diet (84% CHO) = 1kg Add. Lean Mass and a Sign. Trend for Decreased Fat Mass" - Probably the subjects in the study discussed in this SV Classic Article simply had the right genes ;-)
Fasting glucose was reduced in rs328 CC homozygotes (p=0.028) but not G carriers (p=0.686) within the intervention group.

Also an ancillary study with greater statistical power by combining the baseline measurements across both the intervention and control groups was conducted to test the cross-sectional statistical interactions between carbohydrate/fat and lipoprotein lipase genotypes for homeostasis model assessment of insulin resistance/insulin/fasting glucose. Increased carbohydrate intakes were positively associated with homeostasis model assessment of insulin resistance and insulin in rs328 G carriers but not CC homozygotes (p for interaction was 0.025).

"These results indicate that diet high in carbohydrate may not be suitable for metabolic syndrome rs328 G carriers, calling for the development of personalized dietary intervention for metabolic syndrome subjects," (Zhang. 2015) scientists say.
  • Unsurprisingly, the combination of both, diet and exercise triggered significant reductions in weight and body fat in both diet groups (high and low carb). Nevertheless, both, the carbohydrate content of the diet and the genotype < > diet match, had significant effects on the study outcomes, as well. More specifically, ...
    • the participants following a more carbohydrate restricted diet experienced significantly greater weight loss and slightly greater body composition changes (the low-carb-fat-loss-advantage), and
    • matching diet based on gene-type exhibited better retention of fat free mass, albeit with no significant differences between groups in changes in weight or fat mass (the genotype-lean-mass-advantage).
    Now that sounds pretty much like genotyping your diet was always the way to go, right? Well, in view of the fact that the falsely assigned subjects experienced a slightly greater reduction in body fat percentage, the interpretation of the study results does actually depend on one's individual goals and is thus less obvious than it may appear to be when you read the abstract.
  • How much should you eat, ladies? Study shows: No equation can answer this question exactly -- You may believe that your apps and fitness trackers were able to tell you "exactly" how much energy you need, but  eventually their recommendations are also based on equations like those Kisiolek et al. tested in their latest study.

    Do We Systematically Underestimate the Energetic Costs of Push-Ups, Pull Ups, Squats & Co? Study Says Anaerobic Exercises Burn 2x More Energy Than Previously Thought | learn more
    For the experiment on which I base the above statement, the scientists recruited twenty-five recreationally active, college-aged women (20.72 ± 0.97 yrs; 163.04 ± 5.67 cm; 67.08 ± 10.40 kg; 29.04 ± 5.80% BF) who underwent a single day of testing, consisting of determination of REE by indirect calorimetry (TrueOne® 2400 Metabolic Measurement system, ParvoMedics, Sandy, UT) followed by body composition assessment.

    To avoid interferences by exercise or dietary factors, all subjects were instructed to refrain from strenuous exercise 48 hrs prior to testing in addition to fasting >8 hrs prior.

    During the actual testing, the participants laid motionless without falling asleep for 15-20 minutes during REE determination. Data were recorded during a period of time in which criterion variables (e.g., VO2 L/min) changed less than 5% every 5 minutes. In addition, the subjects' body composition was assessed using air displacement plethysmography (BODPOD, Cosmed, USA) via the Siri equatio and fed into the three equations the scientists tested, i.e. the (1) Nelson Equation the (2) Mifflin-St. Jeor Equation and the (3) Harris-Benedict Equation (with a moderate activity factor).
    Figure 2: Energy expenditure (kcal/24h) according to indirect calorimetry (measured) and the three tested equations (calculated); %-ages indicate differences to measured values (Kisiolek. 2015).
    For all three tested equations the results were significantly different than indirect calorimetry (p < 0.001; see Table 1). More specifically, ...
    • the Nelson and Mifflin-St. Jeor equations underestimated REE when compared to indirect calorimetry by 345.5 ± 51.5 and 220.6 ± 47.3 kcals, respectively,
    • while the Harris Benedict overestimated REE by 272.4 ± 49.3 kcals.
    Against that background it could be considered a "success" that all three equations were moderately correlated with the subjects' objectively measured resting energy expenditure (REE) as determined by indirect calorimetry.

    Well, "success" or not, the implications of Kisiolek's study should be clear: "Practitioners should exercise caution when providing dietary recommendations based upon predicted REE values as certain equations may over or underestimate energy requirements by several hundred kilocalories" (Kisiolek. 2015); and I would like to add: If you want to make sure you're nailing it, log your dietary intake during a weight stable week - that's the only way to know for sure how much energy you need.
So what didn't make the "cut"? Worth mentioning, but not discussing in detail are the observations Mullins et al. made when they investigated the effects of Iron Cuts®, a thermogenic supplement from MusclePharm, that appeared to improve the subjects strength, but had no significant effects on the health or body composition of 20 recreationally trained men who participated in Mullins' prospective, double-blind, placebo controlled randomized trial (Mullins. 2015).

Statistical significance was only observed for the small increase in fatty acid oxidation in response to Shred-Matrix® from -3h to pre-workout not for the post increase (Seijo. 2015). Neither of them means that the supplement will actively promote fat loss, though.
The increase in fatty acid oxidation Seijo et al. observed when they studies the acute effects of Shred-Matrix® on fat oxidation is certainly more impressive than the results of Mullins study, but eventually it is of even less practical relevance. As a SuppVersity reader you should now that the currently available research refutes the existence of a reliable mechanistic link between the acute increases in fatty acid oxidation the scientists observed before and after the workout and long-term fat loss (the post-workout increase in fatty acid oxidation was not even significantly higher than the increase in the placebo group, by the way).

In view of the lack of effect on mood state and perception of hunger it is thus very questionable, whether the supplement can actually do what the scientists say their results would "suggest" and augment "the weight-loss benefits at rest and during exercise" (Seijo. 2015) | Comment!
References:
  • Coletta, A., et al. "Influence of Obesity-Related Genotype on Weight Loss Success and Body Composition Changes While Participating in an a 3-Month Exercise and Weight Loss Program: Preliminary Findings." The FASEB Journal 29.1 Supplement (2015a): LB241.
  • Coletta, A., et al. "Effects of matching diet type to obesity-related genotype on body composition changes in women during a six-month resistance-exercise training and walking program." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015b): P16.
  • Kisiolek, J., et al. "A comparison of resting energy prediction equations in young recreationally active women." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P50.
  • Mullins, Jacy, et al. "Safety and efficacy of a proprietary thermogenic and cutting agent on measures of muscular strength and endurance, body composition, fat metabolism, and hormone levels." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P13.
  • Seijo, Marcos, et al. "Effectiveness of multi-ingredient supplement on substrate utilisation, perception of hunger, mood state and rate of perceived exertion (RPE) at rest and during exercise." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P42.
  • Zhang, Shixiu, et al. "Diets high in carbohydrate may not be appropriate for rs328 G carriers with the metabolic syndrome." Asia Pac J Clin Nutr 24.3 (2015): Ahead of print

Minggu, 04 Oktober 2015

MSM Cures Exercise Related Joint & Muscle Pain, But May Effect Immunity | Arginine Silicate Delivers, but Practically Relevant Data is Still Missing | ISSN Research Review '15 #5

Exercise induced joint and muscle pain - Can a few grams MSM help?
In this installment of the SuppVersity ISSN '15 Research Re- or rather Overview I couldn't really find a common theme. With two studies on MSM and one on arginine silicate you could probably best call it the "less researched supplement review".

Many people probably don't even know that MSM stands for "methylsulfonylmethane" and the notion that one could benefit from inositol-stabilized arginine silicate was - I openly admit that - complete news to me, too.
Read more about ISSN and other studies at the SuppVersity

Vitargo, Red Bull, Creatine & More | ISSN'15 #1

Pump Supps & Synephrine & X | ISSN'15 #2

High Protein, Body Comp & X | ISSN'15 #3

Keto Diet Re- search Update | ISSN'15 #4

The Misquantified Self & More | ISSN'15 #5

BCAA, Cholos-trum, Probiotics & Co | ISSN'15 #6
  • The benefits of inositol-stabilized arginine silicate as a workout ingredient - Over the past years the way people thought and think about arginine has changed significantly. While it was originally considered a super-supplement that would increase pump, gains and vascularity, most recent studies on its effects on relevant markers of exercise performance and training adaptation yield similarly disappointing results as Gary Cooks honor thesis from 2015 in which he observed that neither arginine supplementation 20 minutes prior to exercise, nor arginine supplementation two hours post exercise had an effect on the increase in strength performance or hypertrophy following a 4-week resistance training regime (Cook. 2015).

    Only few studies show ergogenic effects of plain arginine. This one, however reports a sign. increase in to exhaustion in a group of elite wrestlers.
    With more and more consumers becoming aware of the lack of effect of regular arginine, supplement producers are forced to develop "alternatives" - alternatives that promise to finally do what regular l-arginine supplements promised to do: Boost your nitric oxide levels, exercise performance and overall gym experience. With inositol-stabilized arginine silicate (ASI; Nitrosigine®) there's a true newcomer that is set about revolutionizing the pre-workout supplement scene ... that's at least if we believe in what the patent holders tell us about the "new standard for pumped results" (manufacturer's homepage).

    In fact, ASI has been previously shown to enhance blood levels of arginine up to six hours post-dose and increase nitric oxide levels, acutely (Kahlman. 2014). In the long(er) term, Whether that would produce practically relevant increases in perceived intra-workout energy, muscle pump, and stamina, as well as post-workout muscle recovery was now the subject of a new study by Rood-Ojalvo et al. (2015).
Future (independent) research necessary: When it comes to supplement research it is absolutely normal that the effects of new products are initially tested by the ones who invent / produce it. In the long run, however, it would be nice to see the results of the study being reproduced by independent research... research that would also include actually meaningful (=performance or hypertrophy-related), objectively measurable study outcomes instead of subjective levels of perceived energy and (on their own) practically irrelevant increases in blood flow.
  • The randomized double-blind placebo-controlled cross-over study study was conducted with 16 male subjects with limited exercise routines prior to participating in the study. The subjects took 1,5g/day of ASI or a placebo supplement daily for 4 days before they completed an intense leg extension exercise protocol to induce muscle soreness. Subjects then returned to the lab after 24, 48, and 72 hours for additional study measurements. After 72 hours, subjects repeated the leg extension exercise protocol to assess whether the provision of ASI (or placebo) had measurable effects on the recovery protocol.
    Figure 1: In spite of significant changes in blood flow velocity and leg circumference (which is interpreted as increased blood flow / hyperemia by the authors) the study at hand cannot prove practically relevant ergogenic effects of ASI simply because corresponding outcome variables were not assessed (Rood-Ojalvo. 2015).
    The scientists' analysis of the data they got produced two important results: Firstly, the 19-33 year-old subjects felt significantly more energetic and less fatigued (at least based on inertia sub-scores) on the 72 hour retest compared to placebo (p = 0.039). Secondly, the provision of the supplement lead to significant increases in leg circumference. Unfortunately, this increase in leg circumference is not a sudden muscle gain. Rather than that, the increased leg circumference appears to be a result of increased hyperemia (=increase of blood flow).
  • In conjunction with the significant decrease in CK levels - a purported, albeit unspecific marker of muscle damage - in the ASI group at 24 (p = 0.040), 48 (p = 0.017) and 72 (p = 0.034) hours, the overall results of the study at hand do thus suggest that short-term supplementation with inositol-stabilized arginine silicate could have ergogenic effects. In the absence of meaningful outcome measures such as the number of reps (=volume) or the maximal weight lifted during the exercise tests, it would yet be premature to say that ASI is a proven ergogenic. 
  • MSM for muscle and joint pain in marathoners and other athletes -- As Withee et al. point out in the introduction of the abstract to their poster presentation "[p]articipants in organized running commonly experience muscle and joint pain while training for and competing in distance events" for them a supplement that is able to reduce the pain associated with osteoarthritis could be a true game changer; and methylsulfonylmethane (MSM), a sulfur-based nutritional supplement, could be that supplement.

    Several previous studies have shown that MSM has anti-osteoarthritic and anti-inflammatory properties. Whether it would also help managing exercise-induced muscle and joint pain, effectively, was now the research question of a recent study from the National College of Natural Medicine in Portland (Withee. 2015). The design of the study is simple:
    "Twenty-two healthy females (n = 17) and males (n = 5) (33.7 ± 6.9 yrs.) were recruited from the 2014 Portland Half-Marathon registrant pool. Participants were randomized to take either MSM (OptiMSM®) (n = 11), or a placebo (n = 11) at 3g/day for 21 days prior to the race and two days after (23 total). Pain was recorded using a 100 mm Visual Analogue Scale (VAS) for both muscle pain (MP) and joint pain (JP) on a single questionnaire. Participants completed the questionnaire at five time points. Baseline levels (T0) were recorded approximately one month prior to the race. Post-race pain levels were recorded at 15 minutes (T1), 90 minutes (T2), 1 Day (T3), and 2 days (T4) after race finish. Data were analyzed using linear mixed models controlled for baseline, with time point as a repeated factor. Simple contrasts compared post-race time points to baseline, and Student's t-tests assessed between-group time point comparisons" (Withee. 2015)
    Unfortunately, this cannot be said for the study results, which showed nothing but a trend of lower pain levels in the MSM group - with non-significant time-by-treatment effects in either of the groups.
    Figure 2: Muscle and joint pain  15 minutes (T1), 90 minutes (T2), 1 Day (T3) after half-marathon race with methylsulfonylmethane (MSM | 3g/day) or placebo supplementation (Withee. 2015)
    In view of the fact that the provision of the 3g of MSM did result "in nearly significantly lower MP at T1 (MSM = 27.3mm vs. placebo = 49.8mm, p = 0.063), and lower MP at T2 (27.1mm vs. 40.0mm; p = 0.300), and T3 (30.0mm vs. 41.9mm; p = 0.306)" (my emphasis in Withee. 2015), as well as similar changes in joint pain (see Figure 2), it does still appear warranted to conclude that MSM supplements (3g/day) may be worth trying for anyone suffering from persistent joint and/or muscle pain after workouts.
  • MSM as an inflammatory cytokine modulator -- While the previously discussed study by Withee et al. (2015) clearly indicates that MSM supplementation helps managing the level of exercise-induced inflammation, Withee et al. did not investigate the mechanism that was responsible for their observations. A recent study from the University of Memphis, however, did just that: In said study, Godwin et al. determined the effect of MSM on lipopolysaccharide (LPS) - induced inflammatory mediators after a single bout of acute eccentric exercise.

    To do so, they had five recreationally active, healthy men consume either 3g/day of MSM or a placebo supplement for 28 days. At the end of the supplementation program, a single bout of acute exercise (10 sets of 10 repetitions of eccentric knee extensions) was performed and blood samples were collected (immediately = 0 h, as well as 24 h, 48 h and 72 h post exercise) and analyzed.

    Do you remember that MSM can also act as a GH booster & bone builder | more
    The most significant results of the analysis are hardly surprising: The supplementation of MSM blunted the increase in the systemic levels of inflammatory cytokines (IL-6 and IL-1β) immediately after exercise.

    What is surprising, though, is the fact that the inflammatory response to LPS exposure in an ex-vivo study with blood that had been drawn at various time-points during the study shows a "dramatic increase in inflammatory cytokine secretion (IL-6, IL-1β and TNF-α) only after exercise for samples that was exposed to MSM" (Godwin. 2015).

    So what does that mean - practically speaking? Well, the authors are certainly right, when they point out that ...
    "[t]his response is specific to the stimulation with LPS as secretion of LPS-non responsive proteins is not increased, as evident by the stable levels of IL-17a [... and thus suggestive of the fact that] MSM is able to reduce the initial cytokine surge that is induced by acute exercise, while allowing for an efficient response to infectious stimuli after a single bout of acute exercise" (Godwin. 2015).
    On the other hand, this assumption stands in contrast to the 2-3 fold increase in IL-10 production after LPS stimulation for the subjects in the MSM group whose pre-exercise levels of the IL-10 levels before exercise. Previous research did after all suggest that greater IL-10 production my be the motor of the exercise induced "depression of immunity commonly reported in athletes engaged in high training loads" (Handzlik. 2013). Whether the chronic use of MSM supplements entails an increased risk of infection may thus warrant further investigations.
3x 1.3g/day cordiceps synensis can significantly increase time to exhaustion and have (individually different) beneficial effects on the ventilatory threshold (Hirsch. 2015).
Two more to go... two more studies that is: While the total number of ISSN '15 studies I haven't discussed or at least mentioned in this series yet is larger than two, there are only two studies I'd like to single out before the end of this installment of this Suppversity series. The Cordyceps synensis study by Hirsh et al. who were able to show that 4g of the mushroom can improve oxygen kinetics, and peak power non-significantly, as well as time to exhaustion significantly in recreationally active subjects who completed  a maximal graded exercise test, 6 min sub-maximal cycle test, and 3 min all-out cycle test, each separated by at least 24 hrs when the supplement is consumed chronically, i.e. in thee servings of 1.3 g equally spread across the day for three weeks (Hirsch. 2015).

Also worth mentioning, but in the absence of hard evidence of causality hardly worth discussing in much detail is Marc Bubbs' observation that basketball players who are training at high-intensity "seem more likely to have insufficient levels of vitamin 25(OH)D" (Bubbs. 2015) - if a follow up shows that normalizing these levels with supplementation will have performance enhancing effects, though, this would be really news-worthy | Comment on Facebook!
References:
  • Bubbs, Marc. "Observational case study-Vitamin 25 (OH) D status of professional basketball players and its impact on athletic performance and recovery." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P55.
  • Cook, Gary. The Effects of Chronic Arginine Supplementation on Muscle Strength and Hypertrophy Following Resistance Training. Diss. Ohio Dominican University, 2015.
  • Godwin, Simone, et al. "MSM enhances LPS-induced inflammatory response after exercise." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P48.
  • Handzlik, Michal K., et al. "The influence of exercise training status on antigen-stimulated IL-10 production in whole blood culture and numbers of circulating regulatory T cells." European journal of applied physiology 113.7 (2013): 1839-1848.
  • Hirsch, Katie R., et al. "Chronic supplementation of a mushroom blend on oxygen kinetics, peak power, and time to exhaustion." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P45.
  • Kalman, Douglas, et al. "A clinical evaluation to determine the safety, pharmacokinetics and pharmacodynamics of an inositol-stabilized arginine silicate dietary supplement in healthy adult males.(LB418)." The FASEB Journal 28.1 Supplement (2014): LB418.
  • Rood-Ojalvo, S., et al. "The benefits of inositol-stabilized arginine silicate as a workout ingredient." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P14.

Kamis, 01 Oktober 2015

Ketogenic Diet Research: Total Body Weight and Fat Gain, but not Muscle Protein Synthesis After Exercise is Impaired in Rodents on Ketogenic Diet | ISSN Research Review '15 #4

I don't know what exactly was in the ketogenic rodent chow that was used in the study at hand, but I doubt it were transfat laden sausages ;-)
Welcome to the fourth issue of the SuppVersity ISSN '15 Research Review... as you will notice I am trying to make the introductions shorter and shorter with each installment of this series. So, let's not waste time and dig right into the latest research on ketogenic diets.

Yes, you heard me right. There is new research on ketogenic diets that does not focus on weight loss, the obese and/or cancer. Rather than that, the studies discussed in this installment of the ISSN '15 Research Review deal with the effects of ketogenic diets on the skeletal muscle anabolic response to resistance exercise, as well as its effects on weigh gain in an ad-libitum diet scenario.
Read more about ISSN and other studies at the SuppVersity

Vitargo, Red Bull, Creatine & More | ISSN'15 #1

Pump Supps & Synephrine & X | ISSN'15 #2

High Protein, Body Comp & X | ISSN'15 #3

Keto Diet Re- search Update | ISSN'15 #4

The Misquantified Self & More | ISSN'15 #5

BCAA, Cholos-trum, Probiotics & Co | ISSN'15 #6
  • You can build muscle on a ketogenic diet - theoretically -- While previous studies on low carbohydrate diets have already demonstrated that eating tons of fat and almost no carbohydrates can trigger improvements in body composition, it is still not clear whether the consumption of virtually carbohydrate-free diets may impair the resistance training induced anabolic response in skeletal muscle. In a previous ISSN article, for example, Paoli et al. )2012) state that their observations in gymnasts on ketogenic diets confirms that
    "the mechanism underlying the increase of body fat utilization [on ketogenic diets] has some pathways in common with mechanisms contributing to the lack of muscle mass increase [which is why] during the ketogenic diet it is actually very difficult to increase muscle mass" (Paoli. 2012).
  • In their latest study, researchers from the University of Tampa tried to get to the bottom of this myth by looking at the degree of muscle protein synthesis (MPS) in rodents on carbohydrate-rich Western and low-carbohydrate "ketogenic" diets (see Figure 1 for the exact macronutrient ratios).
    Figure 1: Macro composition of the non-isocaloric chow (KD - 5.2 kcal/g, W - 4.5kcal/g | Mobley. 2015).
    In week seven and thus after six weeks on the respective diets, the right-leg plantarflexor muscles of the researchers' "subjects", male Sprague-Dawley, were acutely exercised under isoflurane anesthesia by the means of high-frequency electrical stimulations (4 sets of 8 repetitions with 2 min recovery between sets). 90, 180 and 270 minutes after this highly controlled exercise stimulus a group of 8 rodents, each, was sacrificed and the levels of a previously injected tracer (intraperitoneal puromycin) were used as a marker for skeletal muscle protein synthesis (MPS).
    Figure 2: While the absolute figures have not yet been published, I can already tell you that - statistically speaking - the type of diet did not make a difference (Mobley. 2015)
    As you can see in Figure 2, the scientists observed a "main time effect for MPS". In non-scientist English this means that the training resulted in statistically significantly increase in muscle protein synthesis in the trained vs. untrained legs at 90, 180 and 270 min. What is much more important, though, is that this effect was not significantly different for the ketogenic vs. Western diet group. In conjunction with the lack of difference in phosphorylated (p)-4E-BP1 (Thr37/46) and p-rps6 (Ser235/236), two important signalling proteins that are involved in the control of skeletal muscle protein synthesis, it is thus probably warranted to conclude that "these data demonstrate that rats fed a ketogenic diet present a similar anabolic response to resistance exercise compared to rats fed a Western diet" (Mobley. 2015). Whether that's a "fair", let alone practically relevant comparison (the Western diet was lower in protein and isn't exactly a good representation of the average diet true muscle heads will be consuming) is anyone's guess, though.
While some people make it appear as if we already knew that ketogenic diets are superior, you may remember that some recent studies show that balanced diets have more favorable effects on the body composition of certain athletes | learn more
Ketogenic diets and fat free mass - an issue that requires further research in general: Only recently Grant M. Tinsley and Darryn S. Willoughby from the Baylor University highlighted in a review that a "potential loss of fat-free mass (e.g. skeletal muscle)", is a "potential concern of these “ketogenic” diets" of which the "majority of studies" suggests that it was inevitable. Since the most of these studies involve "aggressive weight loss diets" and lack an exercise component, "further research is needed to determine whether resistance training can effectively slow or stop the loss of fat-free mass typically seen in individuals following a ketogenic diet" (Tinsley. 2015). The study at hand can thus be considered the first in a line of studies on the effects and "mechanisms underlying the effects of a ketogenic diet on fat-free mass" (ibid.).
  • Even if it wasn't for the questionable control diet, there would still be one thing the data from Mobley's study cannot tell us and that's whether the putative reduction in IGF-1 that has been observed on low carbohydrate diets (Caton. 2012) may have long(er)-term detrimental effects on muscle gains. There is, as you as a SuppVersity reader will know, good evidence that IGF-1, despite its irrelevance for short term increases in muscle protein synthesis, may play an important role in the long-term adaptational response to exercise (I suggest you go back to this SuppVersity Classic Article if that's news to you). It's thus not just the fact that we are dealing with a rodent study here that makes me want to say that future long(er) term studies in humans are necessary before the myth that ketogenic diets may impair (long-term) gains can be put to rest once and for all.
  • Is weight gain hardly possible on the ketogenic diet? Actually this is another common ketogenic diet myth: When you are consuming a ketogenic diet you cannot get fat. Sounds stupid, right? Well, if you look at a recent study that comes - just as the previously cited study - from the University of Tampa (Holland. 2015), would certainly appear as if there may be something to this claim.

    In their 6-week rodent study, Angelina M. Holland and colleagues compared the effects of ketogenic (KD), Western (WD), and standard chow (StdChow) control diets on fat deposition and serum health-related biomarkers (exact macronutrient ratios are given in Figure 3).
    Figure 3: Macronutrient composition of the diets in Holland's study (Holland. 2015).
    Over the course of the study, the scientists' "subjects", male Sprague-Dawley rats (~9-10 weeks of age) were provided isocaloric amounts of either a KD (5.2 kcal/g, 20.2% protein, 10.3% carbohydrate, 69.5% fat; n = 50), WD (4.5 kcal/g, 15.2% protein, 42.7% carbohydrate, 42.0% fat; n = 66), or StdChow (3.1 kcal/g, 24.0% protein, 58.0% carbohydrate, 18.0% fat n = 10). At the end of the study the exact daily food intake and body weights were recorded and the animals were sacrificed in order to analyze the weight of four different fat depots.

    As it was to be expected, the rats on the ketogenic diet consumed slightly less energy (3,540 ± 74 kcal) than those on the western diet (3,638 ± 83 kcal) over the course of the six week study. It is thus not surprising that there was a significant inter-group difference in terms in terms of the total amount of weight rodents in the KD and WD group gained: 397g vs. 494g to be precise.
    Figure 4: Due to a significantly reduced feed efficacy (weight gain per energy intake) the rats on the ketogenic diet gained sign. less weight than both, the rats on the Western diet and standard chow (Holland. 2015).
    What may come as a surprise, though, is the generally reduced feed efficiency (=amount of body weight gained per kcal the rodents consumed) of the ketogenic diet. With a feed efficacy of only 0.018g/kcal, the ketogenic diet was significantly less fattening than the Western diet (0.042 ± 0.007g/kcal) and the standard chow (0.045 ± 0.012g/kcal).

    That's a quite a remarkable result, but if the lack of weight gain applied only to the total amount of body weight, it would be difficult to decide whether that's a good or a bad thing. When the scientists took a look at the weight of the fat depots, however, it became clear that the lion's share of the weight difference was mediated by a lack of fat, not just weight gain.
    "KD and StdChow had significantly less absolute and relative omental (absolute omental: 0.8 ± 0.3g and 1.2 ± 0.4g vs 1.6 ± 0.6g, respectively, p < 0.05; relative omental: 2.1 ± 0.7 and 2.4 ± 0.7 vs 3.2 ± 1.2g/kg, respectively, p < 0.05) compared to WD rats. KD and StdChow also had significantly less perirenal adipose tissue compared to WD (absolute perirenal: 4.2 ± 1.3 and 5.4 ± 1.4 vs 7.8 ± 1.8g, respectively, p < 0.05; relative perirenal: 10.6 ± 2.8 and 11.4 ± 2.4 vs 15.6 ± 3.0g/kg, respectively, p < 0.05). KD had significantly less absolute inguinal subcutaneous (SQ) and scapular brown fat than WD (absolute SQ: 4.3 ± 1.5 vs 6.6 ± 2.4g/kg; absolute brown fat: 0.6 ± 0.2 vs 0.8 ± 0.3g) but similar relative SQ and brown fat weights" (Holland. 2015).
    In view of the concomitantly reduced serum triglyceride levels (WD - 319.7 ± 109.8mg/dL versus StdChow 163.0 ± 67.0mg/dL and KD 69.9 ± 21.2mg/dL; p < 0.05), serum cholesterol and glucose levels glucose, the claim that ketogenic diets may help mammals to maintain stable body weights while improving, not messing with their glucose and lipid metabolism does therefore appear to be clearly supported by the study at hand. All that still has to be done before we can remove the "?" from the subheading that precedes the previous paragraphs would be a human study with a similar / identical design to exclude that any differences in glucose and, more importantly, fat metabolism in human beings increase the feed efficacy of the ketogenic diet to an extent that nullifies the benefits.
Are you looking for an unconventional nootropic? Look no further. Morning cardio on empty could be just what you've been looking for. Learn more in "Breaking the Fast, Cardio & Your Brain: Cardio on Empty is Fatiguing. Fasting Without Exercise, However, Can Have Nootropic Effects"
Which studies didn't make it into this installment of the ISSN '15 Research Review? This time, three studies didn't make the cut. There's Jason Cholewa's study on the "effects of a sports nutrition education intervention on nutritional status, sport nutrition knowledge, body composition, and performance in NCAA Division I baseball players," which may make it into a special on the importance of sport nutrition knowledge, when the full text is published, Solomon et al.'s study on the "efficacy study of alpha BRAIN®" as a nootropic where I would like to see the absolute improvements and the respective standard deviations in cognitive performance before discussing the study in the SuppVersity news, as well as Jones' and Davidson's investigations into the "proportionality of skeletal muscle before and after intervention" the significance of which would go unappreciated if I simply summarized the little information from the abstract | Comment on Facebook!
References
  • Caton, Samantha J., et al. "Low-carbohydrate high-fat diets in combination with daily exercise in rats: effects on body weight regulation, body composition and exercise capacity." Physiology & behavior 106.2 (2012): 185-192.
  • Cholewa, Jason M., et al. "The effects of a sports nutrition education intervention on nutritional status, sport nutrition knowledge, body composition, and performance in NCAA Division I baseball players." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P44.
  • Holland, Angelia M., et al. "Ketogenic versus Western and standard chow diets favorably alters fat deposition and serum biomarkers in rats." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P21.
  • Jones, Brian A., and Robert T. Davidson. "Muscle proportionality: The proportionality of skeletal muscle before and after intervention." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P51.
  • Mobley, C. Brooks, et al. "The anabolic skeletal muscle response to acute resistance exercise is not impaired in rats fed a ketogenic diet." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P22.
  • Paoli, Antonio, et al. "Ketogenic diet does not affect strength performance in elite artistic gymnasts." Journal of the International Society of Sports Nutrition 9.1 (2012): 34.
  • Solomon, Todd M., et al. "A randomized, double-blind, placebo controlled, parallel group, efficacy study of alpha BRAIN® administered orally." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P54.

Rabu, 30 September 2015

3.8 vs. 2.3 g/kg Protein + Exercise to Improve Body Comp. | Digestive Enzymes to Pimp Vegan Proteins | High Protein vs. MUFA Meals for GLP1 | ISSN Research Review '15 #3

"If some is good, more is better!" Unfortunately, this simple maxime does rarely apply when it comes to the physiological response to certain foods and/or supplements. For protein, however, it appears as if the relation holds - at least as long as protein does not become the only energy source in your diet.
I guess by now I can simply skip the lengthy introduction telling you about how I didn't want to cherry pick only three out of more than twenty newsworthy studies that were presented at the Twelfth International Society of Sports Nutrition (ISSN) Conference and Expo in 2015, when I started writing this series right (click here if you have missed the previous articles)?

Well, that's good because it leaves more room for a brief preview of the studies I am about to discuss in today's third serving of the SuppVersity ISSN Research Review 2015 - studies that are all related (in one way or another) to increased protein intake. Either in overweight or obese people, for whom higher protein meals increase the post-prandial increase of the "satiety hormone" GLP-1, or in vegans, vegetarians and everyone else who wants to make the most of his vegetable protein sources (pea and rice protein, to be precise) by adding digestive enzymes to the mix, or - last but not least - gymrats who ramp up their protein intake from 2.3 to 3.8 g/kg body weight to see even more pronounced improvements in body composition.
Read more about ISSN and other studies at the SuppVersity

Vitargo, Red Bull, Creatine & More | ISSN'15 #1

Pump Supps & Synephrine & X | ISSN'15 #2

High Protein, Body Comp & X | ISSN'15 #3

Keto Diet Re- search Update | ISSN'15 #4

The Misquantified Self & More | ISSN'15 #5

BCAA, Cholos-trum, Probiotics & Co | ISSN'15 #6
  • High protein, high GLP-1, ... highly beneficial? As a SuppVersity reader you are aware of the far-reaching metabolic effects of GLP-1 on appetite (suppression | Näslund. 1999), glucose and fat metabolism, as well as thermogenesis (Lejeune. 2006). Against that background, you will know that the small, but statistically significant increase in GLP-1 Franklin et al. (2015) observed in their latest study which compared the effects of a high protein and high mono-unsaturated fat meal on the well-known incretin hormone may have significant long-term effects even though the blood glucose levels of the study's twenty-four overweight or obese participants (male/female: 12/12; age: 38.7 ± 15.3 (mean ± standard deviation) years; BMI: 31.6 ± 4.0kg/m²), who consumed isocaloric meals containing either 35.2% energy from fat and 20.7% from monounsaturated fat (HMF meal) or 31.9% energy from protein (HP meal), did not trigger differences in post-prandial glucose levels at 30, 60, 120, and 180 min.

    Figure 1: Levels of active GLP-1 in response to high protein (HP) or high MUFA (HMF) meals (Franklin. 2015).
    To believe that "simply eating more protein" is going to solve all your weight problems, though, would be short-sighted - especially for the overweight obese for whom the study at hand as well as previous studies investigating the effects of GLP-1 on glucose metabolism suggest that they may benefit to a lesser extent from protein induced increases in GLP-1 than lean individuals, in whom the "satiety hormone" will trigger much more pronounced β-cell responses that in in patients with sign. insulin resistance and pre- or full-blown type 2 diabetes (Kjems. 2003).

    If that sounds like you, using the high(er) protein meals in conjunction with an energy restricted diet to lose weight and thus to improve your insulin sensitivity can obviously still be beneficial. Without a planned, reasonable caloric deficit, however, high(er) protein intakes alone are probably not going to "cut it" (all puns intended).
Even if weight loss is the goal, training fasted and thus hungry does not appear to provide significant benefits. Learn more about this longstanding myth and the reality in my write-up of Schoenfeld et al's seminal paper on fasted cardio and fat loss. A paper that finally had a long-standing and die-hard fat loss myth tumble.
Are you hungry before your workouts? In this case you may be interested in the results of a paper by Nystrom et al.' who suggest that athletes have to use "more proactive strategies [...] to optimize training adaptations". Why's that? Well, of the 481 (240 women, 241 men) NCAA Division I athletes representing eleven intercollegiate sports from three universities in three athletic conferences (i.e., Atlantic 10, Atlantic Coast Conference, Conference USA) who participated in the researchers investigation into the nutrient timing habits of Division I NCAA athletes, 79% reported feeling hungry prior to training, practice or competition - and that despite the fact that most of them had breakfast. It is thus well possible that the amount and types of foods athletes eat before their workouts do still receive (too) little by athletes and their athletic departments which often provide post-workout meals, but fail to do so pre-workout.
  • Pimp my plant protein - digestive enzymes can do the trick! Despite the fact that pea and other protein powders have become widely (and cheaply) available over the past years, vegan and vegetarian athletes and gymrats are still having a harder time satisfying their protein requirements than their omnivore competition or gym-buddies. Against that background and in view of the fact that more and more athletes are "going vegan" or at least vegetarian, the latest study by Julie Minevich (2015) and colleagues from the University of Tampa and the formulators, manufacturers and vendors of digestive enzymes and respective supplements from Chemi-Source and Increnovo LLC, was in fact published quite timely. A study that was designed...
    "to investigate if co-ingestion of a plant protein specific digestive enzyme blend (Digest-All® VP, a proprietary enzyme blend consisting of protease 6.0, protease 4.5, peptidase, bromelain and alpha-galactosidase, Chemi-Source, Inc., Oceanside, CA) can reduce the significant differences in amino acid appearance in the blood between plant and animal proteins" (Minevich. 2015).
    To this ends, 11 resistance-trained male subjects (age: 21.4 ± 1.5 years, body weight: 82.5 ± 3.9kg, height: 177.3cm ± 6.1cm | average training status of 2.3 years ± 1.9 years) were randomly assigned to receive either 60 g of whey protein concentrate, or the same amount of protein in form of a 70:30 blend of pea and rice protein concentrates (Veg), either alone or alonside the enzyme blend Digest-All® VP in a double-blind, crossover study. All supplements were provided on an empty stomach after a 12 hour overnight fast. The three testing sessions, in which blood was drawn immediately prior to, and at 30 minutes, 1, 2, 3, and 4 hours following consumption of the supplements, were separated by a washout period of 7 days.
    Figure 2: Time to achieve peak amino acid levels and total amount of amino acids that made it to the blood stream with whey protein, the pea + rice mix and the pea + rice mix w/ digestive enzymes (Minevich. 2015).
    Ok, I have to admit that the differences are not exactly staggering and the standard deviations (see error bars) are large, but still. One potentially important determinant of skeletal muscle metabolism, the time it takes for the serum levels of essential amino acids - including leucine - to peak, i.e. T_max in Figure 2, was visibly improved by the addition of digestive enzymes to the otherwise comparatively slow digested rice + pea protein mix (if you look at the error bars, you will see that this was just a "trend", though).

    If you also take into account that the digestive enzyme blend brought the area under the EAA curve (see Figure 2) and the peak amino acid levels (not shown in Figure 2) of the vegetable protein blend up to the same level as it was observed with whey protein, it would seem as if the study would provide the missing evidence of the usefulness of proteases and co. for people who want to make the absolute most of their vegetable protein supplements - what is missing, obviously, is data that would allow us to quantify the downstream effects on muscle gains and other practically relevant study outcomes.
  • High protein + training = WIN?! You will certainly remember the impressive results of Antonio et al.'s 2014 study on the effects of a 4.4g/kg protein diet on the body composition healthy resistance-trained men and women (learn more). Right after said study had been published the authors promised a follow up that would combine a similarly high protein intake with a controlled exercise intervention and... voila! The first results of this study were presented at this year's ISSN meeting.

    For the corresponding experiment, Ellerbroek et al. recruited forty-eight healthy resistance-trained men and women in their early twenties. who consumed either 2.3g/kg body weight per day (NP) or 3.4g/kg body weight per day (HP) of dietary protein during the treatment period. Moreover, all subjects participated in a split-routine, body part heavy resistance-training program. Training and diet (everyday) logs were kept by each subject.
Learn everything about the previous study.
Don't worry! I am going to write a full review of this study as soon as it will be published. In theory I would have had to skip it just like the other studies, but since I would have been mad at me if for doing that if I were you, I decided to give summarize the little information you can find in the abstract. Against that background I hope you will understand that I will refrain from making any definite conclusions until I've read the full-text. The abstract does after all lack a lot of potentially relevant information, such as the type of workouts, the way the subjects achieved the increase in protein intake (dietary or supplemental protein), the adherence, actual protein, carb & fat intakes, etc.
  • As the scientists point out in the results section of the abstract, their two-time point (Pre, Post) by two-group (NP, HP) repeated-measures analysis of variance (ANOVA) showed (a) significant time by group (p ≤ 0.05) changes in body weight with weight gains and loss in the normal and high protein groups, respectively (1.3 ± 1.3 kg NP, -0.7 ± 4.0 HP), as well as reductions in total and relative body fat in both groups (-0.3 ± 2.2 kg NP, -1.7 ± 2.3 HP), and % BF (-0.7 ± 2.8 NP, -2.4 ± 2.9 HP) - both as you can see in Figure 3 with significant advantages for the HP group.
    Figure 3: Changes in body weight, fat and fat free mass in the normal and high protein groups during the diet + training intervention; mind the error bars = high inter-individual differences (Ellerbroek. 2015).
    In the absence of any form of ill health effects due to the high protein intake (both groups consumed significantly more than the recommended daily allowance of 0.8g/kg), Ellerbroek et al. also found a significant time effect for the increase in fat-free mass  (1.5 ± 1.8 NP, 1.5 ± 2.2 HP), 1-RM on the bench and squats and vertical jump and pull-up performance - albeit without significant diet-induced inter-group differences.
So what's not in this issue? Poster presentations I decided not to discuss "at length" in this issue are the allegedly interesting presentation by Galvan et al. on the "[e]ffects of 28 days of two creatine nitrate based dietary supplements on bench press power in recreationally active males." Just as it was the case for the previously referenced studies on BCAAs, I'd rather wait for the full-text to be published before I make up my mind on whether creatine nitrate is the first form of "advanced creatines" that's actually worth it's money (unlike the rest of the pack | Jäger. 2011).

Blocking Inflammation is Like Cho- king the Fire: Long Term Weight-, Visceral- and Android-Fat Gain in Human Study Emphasizes Essential Role of TNF-α in Metabolic Control!
The same must be said of a study by Detzel, et al. (2015) in which the researchers compared the effects of functional animal proteins on mTOR and endotoxins like , pro-inflammatory compounds, that arise as a consequence of intense training. There's no debating: The way serum the derived protein supplements (BioBeef, SerumPro, and SuperSerum) were capable of neutralizing endotoxin is is interesting, but to comment on the practical usefulness of blending of high-quality protein sources with functional serum protein supplements (SuperSerum and SerumPro) the abstract that does not provide numbers to assess the relevance of the reductions in IL-8 cytokine production by THP-1 monocytes is simply not sufficient | Comment!
References:
  • Detzel, Christopher J., et al. "Functional animal proteins activate mTOR and bind pro-inflammatory compounds." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P35.
  • Ellerbroek, Anya, et al. "The effects of heavy resistance training and a high protein diet (3.4 g/kg/d) on body composition, exercise performance and indices of health in resistance-trained individuals-a follow-up investigation." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P37.
  • Franklin, Brian, et al. "The effect of meal composition on postprandial glucagon-like peptide-1 response in overweight/obese participants." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P12.
  • Galvan, E., et al. "Effects of 28 days of two creatine nitrate based dietary supplements on bench press power in recreationally active males." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P17.
  • Jäger, Ralf, et al. "Analysis of the efficacy, safety, and regulatory status of novel forms of creatine." Amino Acids 40.5 (2011): 1369-1383.
  • Lejeune, Manuela PGM, et al. "Ghrelin and glucagon-like peptide 1 concentrations, 24-h satiety, and energy and substrate metabolism during a high-protein diet and measured in a respiration chamber." The American journal of clinical nutrition 83.1 (2006): 89-94.
  • Näslund, E., et al. "Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men." International journal of obesity 23.3 (1999): 304-311.
  • Nystrom, M. G., et al. "Nutrient timing habits of Division I NCAA athletes." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P33.
  • Minevich, Julie, et al. "Digestive enzymes reduce quality differences between plant and animal proteins: a double-blind crossover study." Journal of the International Society of Sports Nutrition 12.Suppl 1 (2015): P26.