Tampilkan postingan dengan label energy expenditure. Tampilkan semua postingan
Tampilkan postingan dengan label energy expenditure. Tampilkan semua postingan

Sabtu, 23 April 2016

BFR, Detraining Mass & Strength | Multiple Sets Multiply 'Ur EE | 1- vs. 2-Arm Kettle Bell Swings Rock the Core & More

The # of hands you use to hold your KB while doing swings determines core muscle activity.
With the publication of the latest issue of the The Journal of Strength & Conditioning Research (May 2016 - Volume 30 - Issue 5 | read it), the time has come to do a training science update with data on the effects on blood flow restriction on strength and size gains during detraining, the energetic demands of single vs. multi-set training, the highly significant core muscle activity patterns with single- vs. two-arm kettlebell swings and a handful of auxilliary studies summarized in the bottom line... Sounds interesting? Well, then I don't want to keep you any longer. Let's see which insights said studies have to offer...
You can use BFR powered detraining in your periodization schemes.

30% More on the Big Three: Squat, DL, BP!

Mix Things Up to Make Extra-Gains

Linear vs. Undulating Periodizationt

12% Body Fat in 12 Weeks W/ Periodizatoin

Detraining + Periodization - How to?

Tapering 101 - Learn How It's Done!
  • Low intensity blood flow restriction training done during three times per week during 6 weeks of detraining helps maintain mass in in phys. active subjects (Kim. 2016).

    Compared to vigorous cycling at 60–70% of the subjects' individual heart rate reserve [HRR] without BFR, the low-intensity cycling protocol (30% HRR) with BFR (160–180 mm Hg) Kim et al. prescribed to their subjects, thirty-one healthy college-aged males (22.4 ± 3.0 years, range: 19–30 years), actually increased the leg lean mass of the subjects over time.
    Table 1: Strength and body composition data - *LI-BFR = low-intensity cycling with BFR; CON = control; BFLBM = bone-free lean body mass; ES = effect size; VI = vigorousintensity (Kim. 2016)
    The strength development in both groups was identical, though. This and the fact that cycling is not exactly what you should do to maintain strength and size (learn more about detraining) are yet things you have to keep in mind, before freaking out about how "awesome" BFR is.
  • Study unsurprisingly confirms the superior energy requirements of multiple- vs. single-set workouts - Difference is larger than 100%, in young men and women (Mookerjee. 2016).

    In their study, the researchers from the Universities of Pennsylvania and Cumberlands, as well as the College of New Jersey compare energy expenditure (EE) of single-set and multiple-set resistance exercise protocols using indirect calorimetry.
    Table 2: Loads (kg) used for each exercise presented by gender and combined data (Mookerjee. 2016).
    Twelve men and twelve women (age = 21.4 ± 1.3 years) performed a single-set (SS) and multiple-set (MS) resistance exercise protocol in random order. The subjects performed two protocols at 70% of their 1-repetition maximum. The protocols consisted of 5 upper-body exercises of either 1 or 3 sets per exercise performed in random order. Metabolic and cardiorespiratory data were recorded over the entire exercise session and during 5 minutes of recovery by a portable metabolic measurement system.
    Figure 1: Gross and net (left), as well as relative (per lbm) EE in kcal during SS (single set) and MS (multiple set) training in male and female study participants (Mookerjee. 2016).
    As you can see in Figure 1, the gross (167.9 ± 58.7 kcal) and net (88.3 ± 41.6 kcal) EE for the MS protocol were significantly greater (p < 0.001) than gross (71.3 ± 26.5 kcal) and net (36.3 ± 18.7 kcal) EE of the SS protocol. Conversely, there was no significant difference in the rate of EE between both protocols. Heart rate, respiratory rate, relative V[Combining Dot Above]O2, respiratory exchange ratio, and minute ventilation values were significantly higher during the MS than the SS protocol.

    As it was to be expected, a significant gender difference (p < 0.001) in absolute and relative EE was observed for both protocols where values in men were higher than women. 
  • Doing kettle bell swings with one vs. two arms induces a greater neuromuscular activity for the contralateral side of the upper erector spinae and ipsilateral side of the rectus abdominis, and lower activation of the opposite side of the respective muscles (Anderson. 2016).

    The aim of the study of this study from Norway was to compare the electromyographic activity of rectus abdominis, oblique external, and lower and upper erector spinae at both sides of the truncus in 1-armed and 2-armed kettlebell swing. To this ends, the researchers had sixteen healthy men perform 10 repetitions of both exercises using a 16-kg kettlebell in randomized order.
    Figure 2: Comparison of the EMG activity of the core muscles 1- vs. 2-armed kettle bell swings in sixteen healthy men (age, 25 ± 6 years; body mass, 80 ± 8 kg; stature, 180 ± 7 cm) with 7 ± 7 years of resistance training experience (Anderson. 2016)
    As the data in Figure 2 reveals, For the upper erector spinae, the activation of the contralateral side during 1-armed swing was 24% greater than that of the ipsilateral side during 1-armed swing (p < 0.001) and 11% greater during 2-armed swing (p = 0.026). Furthermore, the activation in 2-armed swing was 12–16% greater than for the ipsilateral side in 1-armed swing (p < 0.001). For rectus abdominis, however, 42% lower activation of the contralateral side was observed during 1-armed swing compared with ipsilateral sides during 2-armed swing (p = 0.038) and 48% compared with the ipsilateral side during 1-armed swing (p = 0.044). Comparing the different phases of the swing, most differences in the upper erector spinae were found in the lower parts of the movement, whereas for the rectus abdominis, the differences were found during the hip extension. In contrast, similar muscle activity in the lower erector spinae and external oblique between the different conditions was observed (p = 0.055–0.969). In conclusion, performing the kettlebell swing with 1 arm resulted in greater neuromuscular activity for the contralateral side of the upper erector spinae and ipsilateral side of the rectus abdominis, and lower activation of the opposite side of the respective muscles.
Normalized electromyography (EMG) amplitude values (mean 6 SD) for the straight and hexagonal barbells, collapsed across 65 and 85% 1 repetition maximum loads (Camara. 2016) |  ++ significant advantage of regular bar; + significant advantage of hexagnoal bar.
What else have we got? Well, there are Trexel's previously discussed popular creatine vs. caffeine study discussed in July 2015 (read more) and Ohya's 400- and 800-m track running study showing that even trained females' performance suffers from inspiratory muscle fatigue after short-duration running exercise, suggesting that "[c]oaches could consider prescribing inspiratory muscle training or warm-up in an effort to reduce the inevitable IMF associated with maximal effort running" (Ohya. 2016).

Furthermore, Camara's previously (only in the Facebook news) discussed study showing differences in the muscle activity pattens (data see Figure on the right) and significantly greater peak force, peak power, and peak velocity for deadlifts with hexoganal vs. regular bars, and, last but not least has now been officially published.

Last, but not least, Beyer's study showing that 4 weeks of unilateral strength training results in "an increase in strength and size of the trained musculature, and cross education of strength in the untrained musculature, which may occur without detectable changes in muscle size, activation, or the acute hormonal response" (Beyer. 2016) as well as two studies I will discuss in detail, next week, should not be forgotten either | Comment on Facebook!.
References:
  • Andersen, V, Fimland, MS, Gunnarskog, A, Jungård, G-A, Slåttland, R-A, Vraalsen, ØF, and Saeterbakken, AH. Core muscle activation in one-armed and two-armed kettlebell swing. J Strength Cond Res 30(5): 1196–1204, 2016
  • Camara, KD, Coburn, JW, Dunnick, DD, Brown, LE, Galpin, AJ, and Costa, PB. An examination of muscle activation and power characteristics while performing the deadlift exercise with straight and hexagonal barbells. J Strength Cond Res 30(5): 1183–1188, 2016
  • Kim, D, Singh, H, Loenneke, JP, Thiebaud, RS, Fahs, CA, Rossow, LM, Young, K, Seo, D-i, Bemben, DA, and Bemben, MG. Comparative effects of vigorous-intensity and low-intensity blood flow restricted cycle training and detraining on muscle mass, strength, and aerobic capacity. J Strength Cond Res 30(5): 1453–1461, 2016
  • Mookerjee, S, Welikonich, MJ, and Ratamess, NA. Comparison of energy expenditure during single-set vs. multiple-set resistance exercise. J Strength Cond Res 30(5): 1447–1452, 2016
  • Ohya, T, Yamanaka, R, Hagiwara, M, Oriishi, M, and Suzuki, Y. The 400- and 800-m track running induces inspiratory muscle fatigue in trained female middle-distance runners. J Strength Cond Res 30(5): 1433–1437, 2016.
  • Trexler, ET, Smith-Ryan, AE, Roelofs, EJ, Hirsch, KR, Persky, AM, and Mock, MG. Effects of coffee and caffeine anhydrous intake during creatine loading. J Strength Cond Res 30(5): 1438–1446, 2016

Rabu, 30 Maret 2016

How Accurate Are Activity Trackers? EE Data From Omron, Fitbit, Jawbone & Other Devices Reveals 10% Error & More

Even though the study doesn't provide a straight-forward answer to the question "Which is the best activity tracker?", it is still revealing.
I hope you don't rely on the data from your activity tracker as a basis to decide how much you can, should or may eat on a daily basis. Why? Well, the first and most important result of a recent study from the Human Performance Laboratory at the Ball State University is that "consumer-based PA [physical activity] monitors should be used cautiously for estimating EE [energy expenditure]" (Nelson. 2016) - and this goes for the data from all the devices that were tested by Nelson et al.: The BodyMedia FIT and the NikeFuel armband, the DirectLife monitor, the Omron HJ-720IT, the Fitbit One, the Fitbit Zip, the Fitbit Flex, the Jawbone UP24, the Basis B1 Band Monitor and the ActiGraph.
Don't tell me you use an activity tracker, but don't periodize your training!

30% More on the Big Three: Squat, DL, BP!

Mix Things Up to Make Extra-Gains

Linear vs. Undulating Periodizationt

12% Body Fat in 12 Weeks W/ Periodizatoin

Detraining + Periodization - How to?

Tapering 101 - Learn How It's Done!
In view of the fact that tracking your energy expenditure is only one of the functions activity trackers are supposed to fulfill and considering the fact that you probably use them only to see if you have gotten more or less active (I do at least hope that you don't use them to guide your appetite ;-), it is still worth to take a look at the detailed results of this recent study.

As you will have guessed, the study was designed to "examine the validity of EE estimates from a variety of consumer-based, physical activity monitors under free-living conditions" (Nelson. 2016). To this ends, sixty (26.4 ± 5.7 yr) healthy men (n = 30) and women (n = 30) wore eight different types of activity monitors simultaneously while completing a 69-min protocol.
If you work out to be able to allow yourself to eat, you know you have a serious problem | learn why!
"The monitors included the BodyMedia FIT armband worn on the left arm, the DirectLife monitor around the neck, the Fitbit One, the Fitbit Zip, and the ActiGraph worn on the belt, as well as the Jawbone Up and Basis B1 Band monitor on the wrist.

The validity of the EE estimates from each monitor was evaluated relative to criterion values concurrently obtained from a portable metabolic system (i.e., Oxycon Mobile) [which is obviously in itself not 100% exact]. Differences from criterion measures were expressed as a mean absolute percent error and were evaluated using 95% equivalence testing" (Nelson. 2016).
A brief glance at Figure 2 reveals that the accuracy was surprisingly similar among the devices. To be more precise, the mean absolute percent error values (computed as the average absolute value of the group-level errors) were 9.3%, 10.1%, 10.4%, 12.2%, 12.6%, 12.8%, 13.0%, and 23.5% for the BodyMedia FIT, Fitbit Zip, Fitbit One, Jawbone Up, ActiGraph, DirectLife, NikeFuel Band, and Basis B1 Band, respectively (unfortunately, not all data appears to be fully reported in the manuscript version of the study I had access to, so don't ask me about missing data, please ;-).
What did the test protocol look like? Subjects took part in a structured activity protocol consisting of 11 activities (three sedentary, four household, and four ambulatory/exercise) chosen by researchers from a list of 21 activities ranging from lying around on the couch to treadmill jogging. Activities were counterbalanced so that sex and age categories had approximately equal participation in the activities. All subjects began by lying quietly on a bed for 10 min. All other activities were performed for 5 min each, in order of generally increasing intensity. All activities were performed at a self-selected intensity by the subject. Subjects chosen to perform the jogging activity had the option of participating in a brisk walk if unable to jog for 5 min.
As the scientists point out, of all tested devices, only "[t]he results from the equivalence testing showed that the estimates from the BodyMedia FIT, Fitbit Zip, and NikeFuel Band (90% confidence interval = 341.1-359.4) were within the 10% equivalence zone around the indirect calorimetry estimate. If you still insist on trying to match your energy intake "exactly" to your energy expenditure, you should plan for a 10% + X% difference from your actual energetic demands - after all, even the indirect calorimetry that was used as a yardstick to judge the accuracy of the devices is not 100% accurate.
Figure 1: Mean absolute percent error when estimating energy expenditure for selected devices (Nelson. 2016).
In that, it is also worth mentioning that the accuracy of the devices was activity and device dependent. The Fitbit One, for example, produces the least error for stair climbing. For the Jawbone UP24, however, the "activity" for which it predicts your energy expenditure best is sitting around.

Accordingly, you could argue that you'd have to wear a certain device for a certain activity, e.g. (a) the Fitbit One, when sitting around (13%), working in the household (27%), taking the stairs (11%), jogging (22%) or cycling (43%) [note: on absolute terms, the error of the Fitbit for being sedentary is still lower than with the device from Jawbone], and (b) the Jawbone UP24, when you're simply walking around... but let's be honest: Since even that wouldn't be 100% accurate, it would be dumb to buy multiple fitness / activity trackers, wouldn't it?
Figure 2: With the exception of data from cycling and housework, the step count data (this graph) is sign. more accurate than the EE data in Figure 1 | If you want to learn more about what activity trackers are good / not good for and what you can / should make of the results of the study at hand, listen to me discuss this study on Monday's installment Super HumanRadio | click here to download the complete podcast that also includes discussions of the links NSAIDs and satellite cells and BPC-157 for muscle and tendon repair!
With an error of 10% you will always lose or gain weight involuntarily: The idea that a tiny technical device on your arm or belt could exactly tell you how much energy you need is in itself hilarious. And that's not just because the study at hand shows that even the best devices are on average +/-10% off (remember: that's +/-10% off another rough estimate that's never 100% exact). If you were dumb enough to match your diet blindly to the data your activity tracker provides, you would thus never achieve reliable results.

With that being said, our body is no biological machine that works according to a set of several (complex) equations. Therefore, the whole idea of a "quantified self" - as awesome as it may seem for the average control freak - must be seen as a tool to hold yourself accountable; a qualitative or semi-quantitative tool in the sense of "oh, I have been roughly 20% less active this week than last week, maybe I should..."

If the previously described rationale is behind the way you use the data from your activity tracker, congratulations! If not, I have to warn you: The margin between "quantifying yourself" and suffering from obsessive-compulsive disorder (OCD) and/or using the devices to fuel your exercise addiction is narrower than you may think | Do you agree, disagree? Let's discuss. Leave a comment on Facebook!
References
  • Nelson, Benjamin N; et al. "Validity of Consumer-Based Physical Activity Monitors for Specific Activity Types ED." Med Sci Sports Exerc (2016): Ahead of print.

Jumat, 15 Januari 2016

High(er) Dose Fish Oil (3g EPA+DHA per Day), an Effective Thermogenic for Older Women - 187 kcal/Day Higher RMR

This study is different from the average "fish oil is good for you" study and that's both refreshing and revealing. Speaking of "fresh" you got a 50/50 chance you buy fresh, not rancid fish oil.
I am not exactly a fan of fish oil supplementation, but I am neither ignoring the few gems among the bazillion of "fish oil is good for you" papers. Samantha L. Logan's and Lawrence L. Spriet's latest paper in the open access journal PLOS|ONE looks as if it was one of those gems. A gem that suggests that 3g of DHA + EPA per day (2 g/d EPA, 1 g/d DHA, to be precise) will not just lower the triglyceride levels of community dwelling older, healthy women by 29%, but also (a) increase their lean mass by 4%, (b) boost their functional capacity by 7% and (c) bump up their resting metabolic rate by 14%, their energy expenditure during exercise by 10%, and the rate of fat oxidation during rest and low-intensity cycling by 19% and 27%, respectively.
You can learn more about omega-3 & co at the SuppVersity

Fish Oil Makes You Rancid?

POPs in Fish Oils are Toxic!

Salmon Oil Bad for the Heart?

MUFA & Fish Oil Don't Match

Fish Oil Doesn't Help Lose Weight

Rancid Fish Bad 4 Health
What? Yep, now I got your attention, right? Well, the objective of the study was to evaluate the effect of fish oil (FO) supplementation in a cohort of healthy, community-dwelling older females. Now, in contrast to your average fish oil study, the scientists did not restrict themselves to measuring the effects on blood measures of insulin, glucose, c-reactive protein, and triglycerides, though. Their primary study outcomes included the effects on the subjects' metabolic rate and substrate oxidation at rest and during exercise as well as on body composition, strength and physical function.

For the study, twenty-four healthy females (66 ± 1 yr) were recruited and randomly assigned to receive either 3g/d of EPA and DHA or a placebo (PL, olive oil) for 12 wk. Exercise measurements
were taken before and after 12 wk of supplementation and resting metabolic measures were made before and at 6 and 12 wk of supplementation.
Figure 1: Relative changes in metabolic parameters at rest and during 30 min of exercise (Logan. 2015).
As you already know and can now see in Figure 1, the fish oil supplementation significantly increased the subjects' resting metabolic rates, energy expenditure during exercise and the rate of fat oxidation at rest and during exercise. What is kind of funny, though, is that the scientists either misreported the actual values or miscalculated the changes, because I used the data from their study to calculate the relative differences in Figure 1 and as you can easily see those are significantly different from the values reported in the introduction - values I copied directly from the abstract.
So, how did this work? As of now we don't really know that. It is most likely that EPA and DHA modulate energy metabolism by activating one or several PPAR receptors, which may then trigger increases in the levels several protein (FAT/CD36, FABPc, UPC3) and enzymes (acyl-CoA oxidase, CPTI) which control the mitochondrial fatty acid oxidation. Additional effects on PGC-1α, which is involved in regulating the genes involved in energy metabolism, as well as in mitochondrial biogenesis and function may augment the metabolic effects of the long-chain omega-3s. Effects of which we do yet not know how they are affected by and whether they require the incorporation of DHA and EPA into the cell membrane - obviously significantly more research is necessary.
Now the reason I am not going to spend time to find out, whether I or the researchers have made a mistake is that the statistically significant increase in resting metabolic rate for example amounts to 7kcal per hour, if the actual value is 2-5% lower or higher that's absolutely irrelevant. Since the same can be said for the other values, I think we all should be able to cope with any potential deviation from the actual data in the following overview I've compiled based on the (hopefully accurate) data from the tables in the full text of the study graphically in Figure 2.
Figure 2: Graphical overview of the absolute increase in energy expenditure and fat oxidation (Logan. 2015).
In conjunction with the marginal, but significant increase in lean mass, which does by the way only partially explain the increase in energy expenditure, these changes are not just statistically, but practically relevant - that's something even I, as a fish oil critic, have to admit ;-)
So, fish oil is a metbalic activator? Well, at least in this particular group of subjects, there's no debating that the 3g of combined EPA + DHA per day triggered statistically significant and as the data in Figure 2 shows even potentially practically relevant increases in energy expenditure at rest and during exercise.

Suggested Read: "TTA + Fish Oil Revisited - Increased Muscular N-3 Levels Compromise Heart & Skeletal Muscle Performance: 40% Reduced Endurance & 54% Lower Work Capacity in 9 Weeks" | more
As the authors highlight, though, "[f]uture research should also aim to test a greater number of participants and include a longer period of supplementation (ie. 1 yr) to determine whether the increase in metabolic rate results in changes in more robust changes in body composition" (Logan. 2015). In view of the complaints of their subjects who had difficulties stomaching the 5g of total fish oil that were required to achieve the desired dose of EPA + DHA, the scientists also argue that future studies have to investigate solutions that reduce the digestive issues (gastrointestinal discomfort) and whether you even need 3g of EPA + DHA or lower dosages would have the same effect... well, and obviously, it would be interesting to see if similar results could be observed in younger and / or male subjects | Comment on Facebook!
References:
  • Logan, Samantha Louise. Physical Activity and Nutrition as Modifiable Lifestyle Factors for Healthy Aging in Older Adults. Diss. The University of Guelph, 2013.

Kamis, 03 Desember 2015

Caffeine + Green Tea = Plus 10% Fat Oxidation & Energy Expenditure at Rest and During Sprint Interval Exercise

From a health perspective it may be good that green tea does not contain all-too much caffeine. From a fat loss perspective, it clearly lacks caffeine.
When it comes to dietary supplements, people like to pay tons of money for unproven ingredients with funky names and dubious or non-existent safety profiles; agents that have been scientifically proven to work, are safe and cheap, on the other hand, are non-sellers or at least considered to be non-effective.

Obviously, I cannot really explain why that is the case (I suspect it is because people effect drug-like effects without drug-like side-effects from supps and are thus always on the lookout for the "next big"... hoax), I can tell you, though, that a recent study that is going to be published in one of the upcoming issues of the Journal of Strength and Conditioning Research (Jo. 2015) shows that caffeine and green tea, two supplements that belong to the previously described category, are everything but useless.
You can learn more about coffee at the SuppVersity

For Caffeine, Timing Matters! 45 Min or More?

Coffee - The Good, Bad & Interesting

Three Cups of Coffee Keep Insulin At Bay

Caffeine's Effect on Testosterone, Estrogen & SHBG

The Coffee³ Ad- vantage: Fat loss, Appetite & Mood

Caffeine Resis- tance - Does It Even Exist?
In said study, Edward Jo and colleagues investigated the effects of a caffeine + green tea polyphenol mix (250mg caffeine + 400mg of a green tea extract with 50% EGCG and 5mg of caffeine per serving) on (a) metabolic rate and fat oxidation at rest, as well as following a bout of sprint interval exercise (SIE) and (b) the performance during a standardized sprint-interval test.

The study was a double-blind, randomized, placebo-controlled, crossover study that involvd 12 subjects (male: n=11; female:1 n=1) whose antroprometric data, i.e "body mass=76.1±2.2 kg; height= 169.8±1.6 cm; BMI= 22.7±3.0 kg/m2; body fat %= 21.6±2.0% [DXA data]" (Jo. 2015), already tell you that they were healthy recreationally active, but not necessarily athletic (it may be worth mentioning that they were relatively stim-naive with an intake of < 201mg of caffeine per day).
Figure 1: Energy expenditure (kcal/h) and fat oxidation (g/day) measure before (at rest) and during (during SIE) the sprint interval exercise 10 and 55 minutes after the ingestion of caffeine + GTE or placebo (Jo. 2015).
During the two testing sessions at the Human Performance Research Laboratory of the California State Polytechnic University, the subjects' resting energy expenditure (REE) was measured for 45 minutes starting 10 minutes after the ingestion of the aforementioned caffeine + polyphenol mix - a mix that was consumed on an empty stomach after an 8-h overnight fast (don't be fooled by the way the scientists report their data in "g/day" and kcal/day - I changed the latter, already but the values for fat in g would have become to small - we are talking about 45 + 30 min and a 24h measurement here).
Don't confuse increases in fat oxidation w/ fat loss: I guess we have to credit the supplement industry for propagating the myth that the ratio of fat to glucose you were burning was in anyway directly related to losing body fat. I am not sure how often I've written this on this blog or told someone in the gym: that is not the case. You can burn 20% more fat and still store more body fat if you increase your energy intake from exactly enough to already too much. The connection between fatty acid oxidation which would actually be a better term for the phenomenon we are talking about is complicated and a decreasing respiratory exchange ratio, i.e. a reduction of the ratio of glucose to fat that's used to fuel your metabolism is not a reliable predictor of fat loss.
After the initial 45-minutes, during which the subjects' resting energy expenditure had been measured, the subjects were placed on a computer-integrated cycle ergometer on which they performed a standardized 30 minute sprint interval exercise (SIE) protocol., the scientists describe as follows:
"Sprint-Interval Exercise Protocol. The SIE protocol was performed on the Velotron DynaFit Pro cycle ergometer and comprised of four 30-second maximal effort intervals each separated by 5 minutes of low-intensity, constant workload cycling (Figure 2). First, the ergometer was properly adjusted for the subject. Adjustment specifications for each subject was recorded during their familiarization visit and repeated for all experimental trials. Subjects initiated the SIE protocol with a 5-minute interval of low-intensity cycling at a constant workload of 75W. Immediately after, subjects cycled with maximal effort for 30 seconds against an added resistance that is 7.5% of BW for males and 7.2% for females. These two intervals were repeated three additional times. After the last 30-second sprint interval, the subjects performed an additional low-intensity 75W interval plus an extra 3 minutes of cool-down at a constant workload of 30W. The total duration of the SIE protocol was 30 minutes" (Jo. 2015).
A workout that had little effect on the effect of the caffeine + green tea combo which did, as you can see, when you compare the "at rest" and "during SIE" values in Figure 1, increase the energy at rest and during sprint interval training to a similar extent. More specifically, the increase in energy expenditure and fat oxidation was - within the margin of inter-individual variability - in the range of +10% during both conditions.

Figure 2: Illustration of the sprint interval exercise test performed 55 min after ingesting the supplement (Jo. 2015).
In view of the fact that we may safely assume that this effect should last for at least 2-3h this can be a practically relevant effect if it is complemented by a reduced energy intake and a caloric deficit. If the latter is not present, even the extremest increases in fat oxidation and energy expenditure will fizzle out and be as irrelevant as the effect of the caffeine + green tea combination on exercise average and peak power (W) during the sprint training, Jo et al. observed in their study... and "Yes!", that is disappointing, but in view of the low dose of caffeine and the non-existent effects of green tea on performance during a test like this not really surprising.
Did you know this SuppVersity Calssic? "Post-Workout Coffee Boosts Glycogen Repletion by Up to 30% and May Even Have Sign. Glucose Partitioning Effects | learn more!
Bottom line: I admit, they certainly sound less exciting as the latest exotic herb from the rain-forest or a substance that is listed only under its funky chemical name on the label, but unlike your average "innovative breakthrough metabolic activator" caffeine and green tea will deliver. The 10% increase in metabolic rate and the accompanying increase in fat oxidation won't make you lose slabs of body fat, but the effects are pronounced enough to expect a measurable effect on the success of your next diet / cut. A cut, by the way, that will still require a significant reduction in energy intake, even if your energy expenditure and fat oxidation. So, don't be a fool and confuse a 10% increase in fat oxidation w/ a 10% increase in fat loss that occurs in the absence of dieting on an ad-libitum diet | Comment!
References:
  • Jo et al. "Dietary Caffeine And Polyphenol Supplementation Enhances Overall Metabolic Rate And Lipid Oxidation At Rest And After A Bout Of Sprint Interval Exercise." Journal of Strength & Conditioning Research: Post Acceptance: November 23, 2015. doi: 10.1519/JSC.0000000000001277