Minggu, 29 November 2015

Ashwagandha Boosts Size & Strength Increases, Augments Fat Loss & Recovery in 8-Week Resistance Training Study

Ashwaghanda may be for gymrats, too.
Ashwaganda is one of the supplements that has been around forever. While this would suggest that it works, the relatively low number of people who actually use it suggests otherwise and scientific evidence in form of peer-reviewed, non-sponsored studies that would allow us to draw a reliable conclusion with regard to its usefulness for athletes is rare... Well, actually there are only four studies on Withania somnifera, which is also known as Indian Ginseng or Winter Cherry, of which you could say that they are at least relevant to the topic - even though none of them was conducted in resistance trained / training individuals.
Read more about exercise-related studies at the SuppVersity

Tri- or Multi-Set Training for Body Recomp.?

Aug '15 Ex.Res. Upd.: Nitrate, Glycogen, and ...

Pre-Exhaustion Exhausts Your Growth Potential

Full ROM ➯ Full Gains - Form Counts!

Body Pump, Cardio & Exercise Expenditure

Study Indicates Cut the Volume Make the Gains!
There's a study by Raut, et al. that evaluated the "tolerability, safety, and activity of Ashwagandha (Withania Somnifera) in healthy volunteers" from 2012; a study by Sandhu, et al. in which the researchers probed the "effects of Withania somnifera (Ashwagandha) and Terminalia arjuna (Arjuna) on physical performance and cardiorespiratory endurance in healthy young adults" and found an increase in velocity [+3%], relative power [+9%] and VO2 max [+7%] in response to 500mg/day for 8 weeks; a study by Choudhary et al. (2015) which found both, increases in VO2max and quality of life of 50 "athletic" individuals in response to a commercial Ashwaghanda product that goes by the cryptic acronym KSM-66 Ashwagandha; as well as a study by Shenoy, et al. (2012) which found 11%, 16% 16% and 2% increases in time to exhaustion, VO2, metabolic equivalents (METs) and respiratory exchange ratio (RER), respectively (note: the benefits were sign. lower in female study participants, see Table 1), in response to the same amount, i.e. 500 mg/day, of an aqueous root extract of Ashwagandha that has been used by Sandhu et al. two years before.
Table 1: Mean percentage (%) difference of pre-post readings of forty male and female elite (elite here refers to the participation of the athlete in at least state-level events) Indian cyclists in response to 8 weeks on 500 mg of standardized aqueous root extract, which was obtained in the form of capsules from Dabur India Limited (Sandhu. 2012).
With that being I should mention that several studies suggest that your source of Ashwaghanda may well determine its effects. So, any current and future contradictions in the literature may be related to the level of desirable and undesirable "active ingredients" in the tested extracts. Patel, et al., for example, report that 50% of the samples they analyzed in 2015 contained mercury (Hg) at levels "above the permissible limit". Reason enough for the researchers to conclude that the "consumption of drug (Ashwagandha) obtained from polluted areas may cause accumulated side effect as well as the toxic effect of the heavy metals, respectively" (Patel. 2015). In view of the fact that I assume that Wankhede et al. used an (a) heavy-metal free and (b) truly standardized extract with actual steroidal lactones (withanolides, withaferins), saponins and alkaloids like isopelletierine and anaferine in it, in their recent
"prospective, double-blind, placebo-controlled parallel group study to measure the possible effects of ashwagandha extract on muscle strength/size, muscle recovery, testosterone level and body fat percentage" (Wankhede. 2015)
in young men who participated in a standardized resistance training regimen, it is thus not totally impossible that the next best Ashwaghanda product from the internet will produce significantly different results. I guess you should keep that in mind if you plan to go shopping after reading this article. The product Wankhede, et al. used, by the way, was provided by Shri Kartikeya Pharma and Ixoreal BioMed and happened to be the same KSM-66 high-concentration root extract Choudhary et al. used in their likewise very recent study.
Figure 1: Overview of the study design as it is visualized in Wankhede et al. (2015)
I don't want to waste your precious time with speculations, though. Let's talk about Wankhede's recent study, on 57 men (18-50 years), who were randomly allocated to either the treatment group, in which the subjects consumed 300 mg of ashwagandha root extract twice daily, or the control group, which received identically looking starch placebo capsules.
BIA and CK - not the best ways to measure body fat and recovery: What should be noted about these measurements, though, is the fact that body fat levels were measured via bio impedance (BIA) and the recovery was judged based on creatine kinase (CK) values. With BIA being susceptible to variations in hydration status and other sources interference (Kyle. 2004) and the CK-values showing extreme inter-individual variability (learn more), the validity of these outcomes remains somewhat questionable.
Both, the subjects who received the active treatment in form of 2x300 mg/day Ashwagandha, as well as those who received the placebo treatment, underwent identical 8-week resistance training programs; programs, the scientists describe as follows:
"The resistance training program consisted of sets of exercises over major muscle groups in both the upper body and the lower body. [...] Each subject in both groups was asked to come to a training session every other day, with one rest day pe week, for three days per week. Every session began with a warm up consisting of five minutes of low-intensity aerobic exercise. The subjects were instructed to perform, for each set as many repetitions as they could until failure. The subjects were asked to go through the full range of motion and were demonstrated the proper technique for safe and effective weight lifting" (Wankhede. 2015).
The workouts were periodized with increasing number of sets from 1-2 to 3. More specifically, the subjects performed barbell squats, the leg extensions, seated leg curls, machine chest presses, barbell chest presses, seated machine rows, one-arm dumbbel rows, machine biceps curls, dumbbel biceps curls, cable triceps press-downs, dumbbell shoulder presses, and the straight-arm pull-downs in the first two weeks and barbell squat (3 sets) the leg extension (3 sets), the leg curl (2 sets), one chest exercise (flat, incline or decline press or fly, cable cross over, 3 sets), one back exercise (rows, pull up, pull down or seated cable row, 3 sets), another chest exercise (3 sets) another back exercise (3 sets), one biceps exercise or one triceps exercise (curls or extensions, 3 sets), and one shoulder exercise (raises or presses, 3 sets) for the rest of the 8-week study.
Figure 2: Absolute increases in thigh, arm and chest size and reduction in body fat (%) over the course of the 8-week study; the figures above the bars denote the inter-group difference in %, * denotes significant differences (Wankhede. 2015).
Significant inter-group differences were found for almost all of the measured variables: the size increases in the arms and chest, the change in body fat (remember, those are only BIA values), serum testosterone, and CK (remember, this is not a very reliable marker of exercise recovery), as well as the strength increase on the bench press and leg extension machine (1RM, each) differed significantly not just from pre- to post, but also from the supplement to the placebo group (see Figure 2, Figure 3).
Figure 3: Changes in 1RM (kg) strength and testosterone (ng/dL) over the course of the 8-week study; the figures above the bars denote the inter-group difference in %, * denotes significant differences (Wankhede. 2015).
Against that background it seems certainly warranted that Wankhede et al. postulate that their study "confirms previous data regarding the adaptogenic properties of ashwagandha" and it also clearly "suggests it [Ashwaghanda supplementation] might be a useful adjunct to strength training" (Wankhede. 2015). The authors are yet also right, when they point out that their study has...
"[...] the following limitations which should lead us to interpret the findings with some caution: the subjects are untrained and moderately young, the sample size of 50 is not large and the study period is of duration only 8 weeks" (Wankhede. 2015)
Accordingly, Wankhede et al. rightly demand that further "[r]esearch studying the possible beneficial effects of ashwagandha needs to be conducted", research that spans "longer periods of time" and includes "different populations including females and older adults of both genders" (Wankhede. 2015). In this regard, I would like to remind you that the previously discussed results Shenoy et al. published three years ago, in which the sex of the participants had a major impact on the study outcome, make studies comparing male to female resistance trainees particularly appealing - from a science perspective, obviously ;-)
Sometimes lab values are deceiving - specifically if allegedly pathological elevations of kidney, liver and (heart) muscle enzymes (CK) are nothing but a perfectly physiological reaction to exercise | learn more!
So, what's the verdict, then? Yes, this is definitely the most exciting 'Ashwaghanda study', I've seen so far. Next to the limitations Wankhede et al. already discuss in the conclusion of their recently published paper in the Journal of the International Society of Sports Nutrition one should not forget, though, that the methods they chose to determine the body composition and state of recovery of their subjects were appropriate, but not optimal. While the former would have been more reliable if they had used a DXA scan, the latter would actually have to be tested via several post-workout strength tests and auxiliary tests and questionnaires as it was done, for example, by Kraemer et al. (2010).

Enough of the complaints, though. Let's be greatful we even have a study investigating the effects of Ashwagandha on resistance training. Plus, the increases in strength, muscle size (which would be similarly thwarted by cell swelling in both groups when it was tested 'only' two days after the last workout) and testosterone, alone, warrant the authors' already carefully worded conclusion that "ashwagandha supplementation may be useful in conjunction with a resistance training program" (Wankhede. 2015) - even if the underlying mechanism is still unknown and the hypotheses the authors list in the discussion, i.e. (a) increase in testosterone (too low to have significant effects | learn why), (b) decrease in the levels of cortisol (not measured + acute cortisol elevations are associated w/ lean mass gains in strength training individuals | West. 2012), (c) beneficial effects on mitochondrial health and reduced ATP breakdown (observed only in rodents that were exposed to toxins vs. exercise), and (d) antianxiety effects and promotion of focus and concentration that "may translate to better coordination and recruitment of muscles" (Wankhede. 2015), are as the word "hypothesis" implies only hypothetical, i.e. conjectural | Comment on Facebook!
References:

  • Choudhary, Bakhtiar, A. Shetty, and Deepak G. Langade. "Efficacy of Ashwagandha (Withania somnifera [L.] Dunal) in improving cardiorespiratory endurance in healthy athletic adults." AYU (An international quarterly journal of research in Ayurveda) 36.1 (2015): 63.
  • Kyle, Ursula G., et al. "Bioelectrical impedance analysis—part II: utilization in clinical practice." Clinical nutrition 23.6 (2004): 1430-1453.
  • Patel, Dhaval, Harisha C. Rudrappa, and Proshanta Majumder. "A comparative pharmacognostical, physicochemical, and heavy metal analysis on Ashwagandha root obtained from natural and polluted sources." International Journal of Green Pharmacy 9.1 (2015): 14.
  • Raut, Ashwinikumar A., et al. "Exploratory study to evaluate tolerability, safety, and activity of Ashwagandha (Withania Somnifera) in healthy volunteers." Journal of Ayurveda and Integrative Medicine 3.3 (2012): 111.
  • Sandhu, Jaspal Singh, et al. "Effects of Withania somnifera (Ashwagandha) and Terminalia arjuna (Arjuna) on physical performance and cardiorespiratory endurance in healthy young adults." International journal of Ayurveda research 1.3 (2010): 144.
  • Shenoy, Shweta, et al. "Effects of eight-week supplementation of Ashwagandha on cardiorespiratory endurance in elite Indian cyclists." Journal of Ayurveda and integrative medicine 3.4 (2012): 209.
  • Wankhede, Sachin, et al. "Examining the effect of Withania somnifera supplementation on muscle strength and recovery: a randomized controlled trial." Journal of the International Society of Sports Nutrition 12.1 (2015): 43.
  • West, Daniel WD, and Stuart M. Phillips. "Associations of exercise-induced hormone profiles and gains in strength and hypertrophy in a large cohort after weight training." European journal of applied physiology 112.7 (2012): 2693-2702.

Jumat, 27 November 2015

Resting 3 vs. 1 Min. Between Sets Pays Off: Greater Size + Strength Gains - Probably Mediated by 15% Higher Volume

Resting long enough to maximize your training volume could be the key to success, i.e. strength and size gains.
If you have been following the various affords to ascribe differences in strength and, even more so, size-increases to a specific training variable, you will remember that the only promising parameters that appear to be supported by more than the literal "outlier study" are training load and volume.

Of these, the former is pretty much uncontested. The latter, however, is still questioned by a camp of inconvincible skep- tics, who simply ignore the fact that there's ample evidence that "[h]igher-volume, multiple-set protocols have consistent- ly proven superior over single set protocols with respect to increased muscle hypertrophy" (Schoenfeld. 2010).
It would be interesting to see if rest periods should also be periodized!

30% More on the Big Three: Squat, DL, BP!

Block Periodization Done Right

Linear vs. Undulating Periodizationt

12% Body Fat in 12 Weeks W/ Periodizatoin

Detraining + Periodization - How to?

Tapering 101 - Learn How It's Done!
What still isn't clear, though, is the role of other training parameters, such as the time you take to recover between multiple sets and exercises aka the "rest intervals". As Schoenfeld et al. point out in the introduction to their most recent study, "several studies have investigated the effects of varying rest interval length on muscular adaptations," (Schoenfeld. 2015) albeit with contradictory results: While Ahtiainen et al (2005) were unable to find a significant inter-group size or strength difference in well-trained subjects (6.6 +/- 2.8 years of continuous strength training) who rested 2 minutes compared to those who rested only 5 minute in response to their 21-week training intervention, Buresh et al (2005) reported more recently that significantly greater size increases of the arms and a trend for greater muscle hypertrophy in the legs in young, albeit untrained subjects who rested for 2.5 minutes instead of just one.
Figure 1: Previous studies found "conflicting" evidence. While Ahtiainen et al. found no effects of 2 vs. 5 minutes in trained, Buresh et al. found effects of 2 vs. 1 minutes rest in untrained subjects. With different subjects, different workouts and most importantly different rest times that were compared it is yet not exactly right to say that the studies contradict each other.
Now, obviously, the ostensible "contradiction" I alluded to in the previous paragraph does eventually not exist. With trained vs. untrained subjects, different workout protocols and most importantly different rest intervals (1 vs. 2 minutes and 2 vs. 5 minutes) the studies by Ahtiainen and Buresh cannot really contradict each other. The same must be said of an even more recent study by Villanueva et al. (2014) the surprising findings of which, i.e. "longer rest periods compromise the gains of older trainees", I've discussed last year, already.
What about the lack of different increases in strength endurance? I have to admit that I do not discuss this finding of the study in detail. While one would expect that shorter rest intervals would produce greater strength endurance adaptations, the researchers observed the opposite, an - albeit non-significantly larger increase in strength endurance in the 3-minute-rest group that correlated with the increase in 1RM strength. Further studies will have to show what the underlying mechanism of this counter-intuitive observation is and whether it may be muscle specific, i.e. occur only in the upper, but not in the lower body.
Eventually, however, this does not change that there is, as Schoenfeld et al. write that "a need for more research to provide greater clarity on the topic" (Schoenfeld. 2015). A "clarity" Schoenfeld et al. sought to find with a study that "used current rest interval recommendations for hypertrophy and strength of 1 versus 3 minutes, respectively, and employed validated measures to directly assess site-specific changes in muscle thickness" (ibid). In that, the researchers speculated that ...
"[c]onsistent with generally accepted guidelines on the topic (Willardson. 2006), we hypothesized that short rest intervals would produce greater increases in muscle growth and local muscle endurance while long rest intervals would result in superior strength increases" (Schoenfeld. 2015).
As you will know if you didn't miss the headline of this SuppVersity article, this hypothesis was only partly validated. The data in Figure 2 confirms that the subjects, "experienced lifters (defined as consistently lifting weights for a minimum of 6 months and a back squat / body weight ratio ≥ 1.0)" (Schoenfeld. 2015), gained significantly more strength, when they rested 3 versus just 1 minute between the 3 sets of their three weekly workouts (Figure 2 does also tell you that the strength endurance increases were identical in both groups).
Figure 2: Changes in markers of strength and strength endurance; * denotes significant pre- vs. post difference, # denotes significant inter-group difference (here in favor of long(er) rest periods | Schoenfeld. 2015).
What was Schoenfeld et al. did not find, however, were increased size gains in the short-rest period group whose 24 workouts that were performed on non-consecutive days over the course of the 8-week study period, were otherwise identical with those of the long-rest period group and comprised a total of 7 exercises for all major body parts, namely...
  • three leg exercises, i.e. barbell back squats, plate-loaded leg presses, and plate-loaded leg extensions), 
  • two exercises for the anterior torso muscles, i.e. flat barbell presses and seated barbell military presses, and 
  • two exercises for the posterior torso muscles, i.e. wide-grip plate-loaded lateral pulldowns, and plate-loaded seated cable rows
This is a highly significant result even for you who is - according to an older SuppVersity Poll - probably training according to a split regimen, albeit most likely with very similar exercises. What may be different from the some, but obviously *smile* not your workout though, is that the supervision by members of the research team ensured that the subjects stuck to the prescribed cadence of 1 second for the concentric and "approximately 2 seconds" (ibid.) for the eccentric part of every the exercise. This as well as the imperative progression to higher weights, whence the prescribed number of 8-12 reps per set could be performed is unfortunately overlooked by many recreational trainees - with disappointing consequences in the form of inferior or even no size and strength gains, by the way... but I am digressing, let's rather take a look at the already mentioned, unexpectedly superior strength size gains in the long(er) rest interval group (Figure 3).
Figure 3: Changes in muscle thickness and corresponding effect sizes; * denotes significant pre- vs. post-changes, # denotes significant inter-group differences; overall it is obvious that there's a long(er) rest advantage (Schoenfeld. 2015).
As the single "#" in Figure 3 tells you, the inter-group differences and thus the advantage of the long(er) rest intervals was statistically significant only for the quads, though. If we also take into account the lack of statistically significant effects on the sleeve sizes (biceps and triceps) in the short rest interval group, as well as the obvious differences in effect sizes (Figure 3, right), there's yet little doubt that the hypothesis that shorter rest intervals yield greater size increases must be considered falsified - at least under the given experimental conditions (trained subjects, three full-body workouts per week, standard hypertrophy set and rep-ranges, etc.).
So what's the verdict, then? At first sight it would appear as if the study at hand would totally refute the idea that shorter rest intervals, or I should clarify, rest intervals that are as short as 60s (*) should have a place in your training regimen altogether (*Schoenfeld, et al. rightly point out that Ahtiainen's result suggest that even 120s could have been enough time to rest - it is thus important to give precise recommendations for rest intervals, not something as arbitrary "short" vs. "long"). We should not forget, though, that even a thoroughly conducted study like the one at hand has its limits and definite conclusions should not be drawn hastily based on a single study result - even if it is, as in this case, corroborated by the results of Buresh et al (2009).

Figure 4: The total training volume in the long(er) rest period group (3 vs. 1 minutes of rest) was on average 15% higher. Due to the relatively high inter-individual differences and the relatively low number of participants (N=21) a statistically significant correlation between the weight lifted per week (total volume in kg as in the figure) and the surprisingly superior gains in the 3-min-rest group could not be established (based on Schoenfeld. 2015).
With that being said, a secondary outcome of the study provides a reasonable explanation for why both, the strength and the size gains benefited from long(er) rest intervals: The total training volume I've plotted in Figure 4. As Schoenfeld et al. point out, the latter has previously been suspected to mediate the effects of inter-set rest on strength and hypertrophy on total training volume and strength (Henselmans. 2014). A correlation between the visible differences in training load (see Figure 4) and the magnitude of training adaptations, however, could not be found in the study at hand. As the authors highlight, the reason for this lack of statistical significant correlations may yet be a simple lack of statistical power, so that one "cannot rule out the possibility that the greater training load achieved by the longer rest period group was responsible for the greater training adaptations" (Schoenfeld. 2015 | Buresh et al. found such an effect for the upper, yet not for the lower body).

Personally, I tend to believe that, with a higher number of subjects, a correlation between the total training volume that was on average 15% higher in the 3 vs. 1 minute rest group could have been established. This, in turn, would support the notion that long(er) rest periods - maybe, as Schoenfeld et al. suggest based on the data from Ahtiainen's study, at least 120s - are necessary to maximize the total training volume and thus the overall = strength and hypertrophy response to workouts. Whether that is true for all types of workouts (e.g. split- vs. full-body), all subject groups (e.g. people who are used to short rest periods vs. those who are not) as well as special athletic requirements (e.g. power vs. strength & hypertrophy) will have to be determined in future studies, however | Comment on Facebook!
References:
  • Ahtiainen, Juha P., et al. "Short vs. long rest period between the sets in hypertrophic resistance training: influence on muscle strength, size, and hormonal adaptations in trained men." The Journal of Strength & Conditioning Research 19.3 (2005): 572-582.
  • Buresh, Robert, Kris Berg, and Jeffrey French. "The effect of resistive exercise rest interval on hormonal response, strength, and hypertrophy with training." The Journal of Strength & Conditioning Research 23.1 (2009): 62-71.
  • Henselmans, Menno, and Brad J. Schoenfeld. "The Effect of Inter-Set Rest Intervals on Resistance Exercise-Induced Muscle Hypertrophy." Sports Medicine 44.12 (2014): 1635-1643.
  • Schoenfeld, Brad J. "The mechanisms of muscle hypertrophy and their application to resistance training." The Journal of Strength & Conditioning Research 24.10 (2010): 2857-2872.
  • Schoenfeld, et al. "Longer inter-set rest periods enhance muscle strength and hypertrophy in resistance trained men." Journal of Strength and Conditioning Research (2015): Publish Ahead of Print.
  • Villanueva, Matthew G., Christianne Joy Lane, and E. Todd Schroeder. "Short rest interval lengths between sets optimally enhance body composition and performance with 8 weeks of strength resistance training in older men." European journal of applied physiology (2014): 1-14.
  • Willardson, Jeffrey M. "A brief review: factors affecting the length of the rest interval between resistance exercise sets." The Journal of Strength & Conditioning Research 20.4 (2006): 978-984.

Rabu, 25 November 2015

GYM-Science Update: Bands Aid W/ Deadlifts? 16x1 or 4x4 for HIIT? Kettlebell HIIT Workout Better Than HIIT-Cycling?

Deadlifts w/ bands as they were done in the Galpin study (original photo from Galpin's 2015 study | see below).
Time for a news-quickie with the latest science to use at the gym - either for your workouts or just to impress the bros with your knowledge. I mean, who else reads and understands all the latest papers in the #1 strength and conditional journal on earth? Well, you do... ok, you read my laymen summaries, but your bros don't have to know that, do they?

Ok, that's enough of the pseudo-comedian warm-up, let's deadlift the first scientific paper... oh,yeah: Actually the paper is about deadlifting, deadlifting with resistance bands as it is shown in the photo on the right, where a subject performs the deadlift on a force plate.
Read more about exercise-related studies at the SuppVersity

Tri- or Multi-Set Training for Body Recomp.?

Aug '15 Ex.Res. Upd.: Nitrate, Glycogen, and ...

Pre-Exhaustion Exhausts Your Growth Potential

Full ROM ➯ Full Gains - Form Counts!

BFR-Preconditio- ning Useless for Weights?

Study Indicates Cut the Volume Make the Gains!
  • Deadlift with bands for power and speed - Galpin et al. (2015) investigated how using bands while deadlifting at different loads, namely 60 and 85% of one's individual 1RM, i.e. the maximal weight you can lift for exactly one perfect rep, would influence the power and velocity at which twelve trained men (age: 24.08 ± 2.35 years, height: 175.94 ± 5.38 cm, mass: 85.58 ± 12.49 kg) with deadlift 1 repetition maxima (1RM) of 188.64 ± 16.13 kg pulled the weight off the floor.

    The results of the study show that there were significant peak (yet not relative) power changes irrespective of whether only 15% of the total resistance (group B1) or 35% of the total resistance (group B1) came from the bands (vs. the actual weight).
    Figure 1: Relative changes in power and bar velocity (compared to training w/out bands = control); * denotes sign. difference to control, ** denotes significant difference to control and light bands (Galpin. 2015)
    The effect became even more pronounced and extended from peak to average power, when the subjects used the heavier (85% 1RM) weights. In this condition using bands lead to greater peak and relative power production and lowered the velocity significantly compared to the control condition in which the subjects lifted at the same total level of resistance, albeit without bands (all values in Figure 1 are relative differences).

    For trainees the data in Figure 1 could be highly relevant, because it indicates that heavy bands should be used, when "prescribing the deadlift for speed or power, but not maximal force" (Galpin. 2015). If that's not you, i.e. you're not training for speed and power, but e.g. for size, future long(er)-term studies will have to show whether using bands makes a difference with respect to this study training goal.
  • Interval length, can you really pick whichever suits your best? Even though a recent study by Wesley Tucker et al. (2015) shows that the rate of perceived exertion, as well as the mean heart rate of 14 recreationally active and thus not exactly jacked males who participated in their latest study were identical on 4x4 and 16x1 high intensity interval protocols (i.e. 4 intervals à 4 minutes vs. 16 intervals a 1 minute | see Figure 2), seasoned SuppVersity readers will probably remember that previous studies showed highly relevant differences in the long(er) term effects which obviously cannot be measured in an acute phase study like the one at hand.
    Figure 2: Illustration of the two HIIT protocols, incl. warm-up and cool down on cycle ergometers. White boxes are intervals during which the subjects were supposed to exercise at 90% of their peak heart rate (during the 16x1 protocol this was not achieved by all study participants in the latter intervals, though | Tucker. 2015).
    To be more specific, previous studies on high intensity interval training suggested that athletes who want to increase their VO2 max benefit more from fewer longer intervals, while "Mr. and Mrs. Average" could be better off improving their body composition and metabolic rate with a higher number of short intervals (even as short as 15 seconds in the Tabata protocol). Against that background and in order to explain or contradict the previous findings, it may be worth to consider other study outcomes in Tucker et al. (2015). Study outcomes which did differ. The total energy expenditure, for example, was 19% higher during the 16x1 protocol (p < 0.001) which is in line with the previously referenced recommendation of short intervals for people who are trying to lose weight.
    Figure 3: VO2, heart rate, and energy expenditure during the two HIIT protocols (watch the units! I converted them to be able to put all data into the same graph | Tucker. 2015).
    The VO2 uptake, as well as the maximal heart rates, which could be of interest for endurance athletes, on the other hand, were higher in the 4x4 protocol - a finding that would likewise support the previously voiced recommendation that (endurance) athletes should torture themselves with long(er) intervals to trigger further adaptations in VO2max and heart rate at a given power output.

    Overall, the study at hand will thus not revolutionize your training, but if you haven't read the previous SuppVersity articles, you may still have gotten some new insights into how you may want to adapt your HIIT training in the future.
  • Kettlebell or cycle ergometer? Which do you chose for your HIIT sessions? I've written about kettlebell swings as muscle builders before and I've also hinted at the possibility of using the "bells" for your HIIT workouts. Now, a recent study by Williams and Kraemer shows that
    "[kettlebell high intensity interval training aka] KB-HIIT may [even] be more attractive and sustainable than [sprint interval cycling aka] SIC and can be effective in stimulating cardiorespiratory and metabolic responses that could improve health and aerobic performance" (Williams. 2015).
    The purpose of the study was - you probably already guessed it - to determine the effectiveness of a novel exercise protocol we developed for kettlebell high-intensity interval training (KB-HIIT) in comparison to the classic, standard sprint interval cycling (SIC) exercise protocol most people associate with equipment-based HIIT sessions. To this ends, the researchers from the Southeastern Louisiana University had eight "very active" young men (mean age 21.5 years; body fat 18.52 +/-3.04%, fat free mass 67.44 kg of a total weight of 82.95 kg) complete two 12-minute sessions of KB-HIIT and SIC in a counterbalanced fashion.
    Figure 4: Overview of the KB-HIIT workout (my illustration).
    "In the KB-HITT session [exercises see Figure 4, mean weight depending on exercise and subject 10-22 kg], 3 circuits of 4 exercises were performed using a Tabata regimen.

    In the SIC session, three 30-second sprints were performed, with 4 minutes of recovery in between the first 2 sprints and 2.5 minutes of recovery after the last sprint" (Williams. 2015)
    The study's within-subjects' design over multiple time points allowed Williams and Kraemer to compare the oxygen consumption, the respiratory exchange ratio (RER, a marker of the ratio of fat to carbohydrates that is used as fuel during the workout), the tidal volume (TV, the volume of air that is inspired or expired in a single breath during regular breathing), the breathing frequency (f), the subject's minute ventilation (VE), caloric expenditure rate (kcal/min), and their heart rate (HR) on an individual basis between the exercise protocols. In conjunction with the total caloric expenditure which was likewise measured / calculated and compared. The total amount of data the authors collected was thus quite large.
    Figure 5: Mean total energy expenditure in kcal during the KB and SIC sessions (Williams. 2015)
    Significant inter-group differences were found for VO2, RER, TV and total energy expenditure, with VO2 and total energy expenditure being higher and TV and RER being lower in the KB-HIIT compared with the cycle ergometer HIIT protocol. For f, VE, the energy expenditure per minute and the heart rate, there were no general inter-group differences, but "only" significant group × time interactions. Practically speaking, this means that they changed differently over the course of the whole protocol and are thus maybe relevant for certain athletes, yet not for the general public.

    Overall, the William's and Kraemer's study does therefore support the notion that doing kettlebell HIIT workouts is probably at least on par with the classic cycling HIIT sessions. In view of the increased total caloric expenditure and the lower RER, which signifies a significantly higher fat oxidation during the workout, it is even possible that KB-HIIT would be the better choice for dieters than doing HIIT on a cycle ergometer. Since there is no direct link between fat oxidation and/or energy expenditure during workouts and fat loss, however, long(er)-term studies are necessary to find out whether doing KB-HIIT is in fact more than a equivalent and for many of you maybe funnier alternative to doing HIIT on a cycle ergometer. 
Block Periodization - Training revolution or simple trick? This is what we have to ask ourselves in view of the results of a previously discussed study from 2014 | Read the full SV-Classic article here!
Bottom line: That's it for today; so I suggest you take what you learned, pack it in your gymbag and go and impress your bros at the gym ;-) I am just kiddin'... actually I hope that you can really use some of the information in today's installment of the SuppVersity Short News to make your workouts more productive, more enjoyable and/or simply more versatile.

Personally, I will probably give the KB-HIIT workout a try,... and that even though I expect it to be much harder than cycling which is something I am already used to. But hey, isn't that what training is all about? You have to challenge your body - even if that means conquering your weaker self.

I mean, we all know that as soon as you are staying within the cozy comfort zone of doing the same exercises with the same weights workout after workout your progress will stall; and unless you are one of those people who hit the gym to be able to talk to their athletic friends, that's certainly nothing you should aim for | Comment on Facebook!
References:
  • Galpin, AJ, Malyszek, KK, Davis, KA, Record, SM, Brown, LE, Coburn, JW, Harmon, RA, Steele, JM, and Manolovitz, AD. Acute effects of elastic bands on kinetic characteristics during the deadlift at moderate and heavy loads. J Strength Cond Res 29(12): 3271–3278, 2015
  • Tucker, WJ, Sawyer, BJ, Jarrett, CL, Bhammar, DM, and Gaesser, GA. Physiological responses to high-intensity interval exercise differing in interval duration. J Strength Cond Res 29(12): 3326–3335, 2015
  • Williams, BM and Kraemer, RR. Comparison of cardiorespiratory and metabolic responses in kettlebell high-intensity interval training versus sprint interval cycling. J Strength Cond Res 29(12): 3317–3325, 2015

Senin, 23 November 2015

Training "On Cycle", Done Right - Women See Much Better Results When Periodization is in Line W/ Menstrual Cycle

Yes, I could have exploited the ambiguity and called this article "Training 'On Cycle', Done Right - Women See Much Better Results When Periodization is in Line W/ Their Period", but let's be honest: This is a science website and that's neither scientific, nor actually funny, is it?
As a man, I have to admit to be at best well-read, yet not experienced in all things "menstrual cycle". So, while I do only know from the (very different things) I've heard from (ex-)girl friends about how they feel during the different phases, I do know that the hormonal differences in the luteal phase, with high levels of progesterone and estrogen, and the follicular phase with low progesterone and eventually increasing estrogen levels are pronounced enough to cause much more than just mood disturbances.

For many trainers, however, the estrous cycle is still a closed book. "Can you train, or not!?" Especially male trainers are not just insensitive when they ask their protégées this question, they may also be missing out on a chance to maximize their clients' training progress. That's at least what a recent 4-months study from the Umea University in Sweden (Wikström-Frisén. 2015) suggests.
Learn more about the (often ;-) small but significant difference at the SuppVersity

1g PRO per 2g CHO + Circuit T. for Women?

Is the Optimal Exercise Order Sex-Specific?

1-3mg Melatonin Shed Fat W/Out Diet & Exercise

Not Bulky! Lifting Will Make Toned & Strong.

How to Really Train Like a Woman

Sex-Differences in Fat Oxidation - Reviewed
According to Wikström-Frisén and colleagues, "high frequency periodized leg resistance training during the first two weeks of the menstrual cycle is more beneficial to optimize training, than the last two weeks" (ibid. 2015). Now, "beneficial" is obviously a very loosely defined term. When I am telling you, though, that power, strength and lean body mass gains all benefited from the right timing of the workouts (in the first two weeks of the estrous cycle), I will hopefully have every women's and every trainers' attention (even though, I guess I will lose even more of the male bros, now).
Figure 1: Relative changes in lean mass (DXA data), measures power and strength (torque) in 59 trained women in response two weeks of frequent leg-training in the first or second two weeks of their estrous cycle (Wikström-Frisén. 2015).
While all the aforementioned increases in the women who trained in the first two weeks of their estrous cycle were statistically significant (for all, but the quad torque test | +4.4% the statistical significance also survived the Benferroni corrections), the women in the group for whom the periodization scheme had a focus on the second two weeks of their menstrual cycle, saw no significant changes in lean mass and power and a significant reduction in quad strength (see Figure 1). Since the latter lost its statistical power, after Benferroni corrections, though, one could say that the changes the Swedish researchers observed in the 2nd weeks group were practically meaningless.
What about women on oral contraception? The scientists recruited 32 young women on oral contraceptives and 27 women who didn't use oral contraceptives and a re-analysis of the data in Figure 1 didn't show significant inter-group differences between the two groups. In other words, the data in Figure 1 and thus the main findings are relevant for "all" resistance training young women, irrespective of whether they're taking contraceptives, or not. The only difference is that you go by the contraceptive (CC), instead of the estrous cycle and place the high frequency training period in the first, not the last two weeks of the CC cycle.
"Meaningless changes", however, are not meaningless results. In fact, the exact opposite is the case. These results tell trainers and female trainees, alike, that abandoning their protégées / their own
  • regular non-periodized training, i.e. three leg training workouts per week that consisted of leg presses and leg curls (3x sets @ 8-10RM, 1-2 minutes rest between sets; progressive increase of weight by 2-10% whenever the subjects could perform 3x10 reps with a given weight) 
for 4-months and switching to a periodized 2-week high- vs. 2-week low-frequency training, where they would perform the same 48 workouts in either
  • high-frequency first cycles, i.e. 5 workouts per week in the first two weeks, 1 workout per week for the last two weeks of each menstrual / contraceptive cycle, or
  • high-frequency last cycles, i.e. 1 workout per week in the first two weeks, 4 workouts per week for the last two weeks of each menstrual / contraceptive cycle,
would have beneficial effects on their progress only if they increase the frequency during the early phase of the cycle. 
Figure 2: Comparison of the relative changes in the periodization group (high frequency in the first two weeks of the menstrual / CC cycle) vs. control group (three workouts per week for 4 months | Wikström-Frisén. 2015).
Ok, if you compare the periodization group to the control group which kept the regular "three workouts per week"-frequency (see Figure 2, green bars) was maintained, the "advantages" of periodizing "correctly" are not as pronounced as they are in comparison to doing it the "wrong" way. Even though, only the hamstrings appear to benefit to a large extent from periodization, though, benefits exist.

What's even more important, though, is the simple, but really important revelation (or for the few of you who have read about this before e.g. in Reis et al. (1995) "confirmation") that a woman's menstrual and similarly her contraceptive cycle must be aligned to her training schedule. Obviously, the implications will have to be further explored in future studies. Studies, of which I hope, that they will be using smarter periodization schemes which acknowledge that training only once a week is simply not enough... ;-)
SuppVersity Classic: Train Like a Woman: Common Misconceptions About Training & Eating for A Cover-Model Physique - An Interview With Sports Nutritionist & Strength Coach Orit Tsaitli | learn more
Bottom line: Before I try to put things into perspective, I should mention that the participants of the study who were recruited at local gyms, were not jut healthy, non-smokers and had regular menses, they were also experienced trainees. All of them had been doing leg presses and leg-curls for several months - in fact, on average for 3.5 years. Against that background, even non-statistical significant inter-group differences as they were observed between the periodization (5 per week, 1 per week) and the control group (3 per week) may be practically relevant, because they may help experienced trainees to break through plateaus.

With that being said, I personally think of this study as one study in a series of studies that will hopefully elucidate how women can adapt their training regimen to the repetitive changes in the hormonal milieu of their bodies.

If we are honest with ourselves, the fact that Wikström-Frisén's results come as a surprise to most of us is only further evidence of how wantonly exercise scientists and trainers, alike, have hitherto neglected the peculiarities of the female physiology and endocrinology | Comment on Facebook!
References:
  • Reis, E., U. Frick, and D. Schmidtbleicher. "Frequency variations of strength training sessions triggered by the phases of the menstrual cycle." International journal of sports medicine 16.8 (1995): 545-550.
  • Wikström-Frisén, L., C. J. Boraxbekk, and K. Henriksson-Larsén. "Effects on power, strength and lean body mass of menstrual/oral contraceptive cycle based resistance training." The Journal of sports medicine and physical fitness (2015).

Jumat, 20 November 2015

Fat-Blocker Effect of Tea Catechins Confirmed (?) in Man - Sign. Abdominal Fat Loss (5-8%) in 12 Weeks W/Out Diet

Tea catechins (which can also be found in black and jasmin tea | see Figure 3) can help you keep particularly unhealthy abdominal fat (Després. 2012) at bay.
It is one thing to have in-vitro and rodent data that green tea can inhibit the digestion of dietary fat (reported previously in the SuppVersity Facebook News); it is another thing, however, to have a human study like the one Makoto Kobayashi and colleagues are about to publish in the peer-reviewed scientific journal Food & Function that shows that the "[i]ngestion of a green tea beverage enriched with catechins with a galloyl moiety (THEA-FLAN 90S) during a high-fat meal reduces body fat in moderately obese adults" (Kobayashi. 2015).

Ok, the abdominal fat loss does not, as the previous quote from the conclusion appears to suggest, occur instantly right after you've consumed your first tea w/ a single meal.
You can learn more about green tea at the SuppVersity

GT Boosts Res- ting & Ex. Indu- ced Energy Exp.

Water Temp. Influences Effects of Tea

Green Tea Can Reduce Your Testosterone

1L+ of Green Tea per Day Mess Up Your Thyroid

Aluminum, Lead & Arsenic & MORE in Your Tea

Will Drinking Tea Solve Your Sugar Problem?
Rather than that, 124 subjects (two of the initially 126 subjects 2 dropped out for personal reasons unrelated to the trial), 53 men, 71 women, who consumed similar, albeit non-standardized diets (see Figure 1 | note: physical activity was also identical) and began the study with body fat levels of ca. 31-35% had to consume the previously mentioned tea beverage that contained tea catechins (250 mL with 215.3 mg green tea catechins containing 211.0 mg green tea catechins with a galloyl moiety) twice or three times daily during mealtimes for 12 weeks, before the significant reduction in body fat became visible.
Figure 1: Macronutrient composition (in g an % of energy) of the non-energy reduced diets the subjects consumed; the values in the left pie chart represent a group average of all three intervention groups. Since the data is based on food records with photographs, it is probably more reliable than in your average diet study (Kobayashi. 2015).
Now, in view of the fact that this is not the first study to demonstrate weight loss effects in overweight subjects consuming green tea or, as in most other studies, green tea extracts, the word "during" and thus the fact that the green tea beverage was consumed with at least two of the three meals per day should be highlighted as a specific feature of the study at hand that is highly relevant to its interpretation.
Figure 2: Detailed analysis of the rel. change in fat area in the abdominal depot of the subjects (Kobayashi. 2015)
It is after all the requirement that the green tea beverage had to be consumed with a (preferable high fat) meal that allows the authors to conclude that the significant fat loss Kobayashi et al. measured by the means of computer tomography predominantly in the abdominal area are the result of an inhibition or slowing of the intestinal fat absorption and thus warrant the conclusion that "the ingestion of green tea beverages enriched with CGM together with high-fat meals may be an effective strategy for reducing body fat in moderately obese adults" (Kobayashi. 2015) - an observation of which I would like to add that the underlying mechanism is not 100% certain.
What about weight and, even more importantly, muscle loss? No, losing lean mass was not an issue in, because weight loss (-0.6 and -0.8% in the low and high dose group, respectively | measured by bio-electrical impedance vs. computer tomography as it was the case for the abdominal fat area) was actually not an issue, either. If you want to measure your success on the scale, green tea is thus not going to be the "diet tool of choice" (unless you use it alongside an energy-reduced diet)... however, if you take into account that the placebo group actually did what the average Westerner does, these days, i.e. gain weight and body fat over the 12-week study period, you may argue that you can still see the results on the scale which could finally stand still after years of displaying subtle, but eventually relevant increases in body weight.
The authors base their conclusion that it is "unlikely that absorbed green tea CGM leads to increased energy expenditure, followed by reduced abdominal body fat area" (Kobayashi. 2015) on two reasonable, but experimentally (in this study) not confirmed assumptions which are that little to no catechins actually made it into the bloodstream, because ...
  1. the low caffeine content of the beverage limits the bioavailability of EGCG & co (caffeine enhances its bioavailability | Nakagawa. 2009) and
  2. the ingestion of the beverage with a meal has been shown to significantly reduce the bioavailability of green tea catechins in comparison to the fasted state (Chow. 2005).
The assumption that its just a blockade of the digestion of fat becomes even more questionable, if you (re-)read my 2014 article on the carb blocking effects of tea... Well, eventually, though, you may argue that it does not matter if the reduction in abdominal fat was due to thermogenic effects, thermogenic and fat-blocking effects or, as the scientists believe, mediated exclusively an "inhibit[ion] or slowing [of the subjects'] intestinal fat absorption" (Kobayashi. 2015). And let's be honest, I guess you're right. What matters is that there were significant reduction ins abdominal fat (visceral, subcutaneous and total abdominal fat area). Reduction of which the data in Figure 2 tells you that ...
  1. Table 1: Catechin composition of the test beverages.
    the fat loss in the abdominal area was dose dependent - even if the differences between the low and high dose group did not reach statistical significance (for the exact catechin composition see Table 1 on the right) - and that 
  2. roughly 50% of the benefits were lost within only 5 weeks when the subjects stopped consuming the green tea beverage, even though their diet didn't change at all (in fact, they consumed minimally less energy in the withdrawal phase from week 12-17).
Now, (b) is obviously good news for green tea lovers, but bad news for those who cannot imagine consuming green tea containing beverages "for the rest of their lives".
Green tea forever, it is then!? Well, as usual we have to consider what limits the generalizability of the results. Firstly, we are dealing with a group of people who have more than a few pounds of extra-weight on their hips. An abdominal fat loss of 8% in 12 weeks is thus not impossible, but not exactly likely to be seen in someone who starts at a body fat percentage of 15% or less (which is half what the subjects in the study at hand began with).

Figure 3: Catechin content (mg/10ml) of black, green and jasmine tea prepared from commercial tea w/ different infusion times (Bronner. 1998).
The second thing we have to keep in mind is the beverage itself. As you've previously read, it has been enhanced with catechins with a galloyl moiety (CGMs | EGCG, ECG, GCG, CG). Does this mean that you cannot achieve similar results if you simply drink green tea? Luckily, data from Bronner, et al. (1998) suggests otherwise. As you can see in Figure 3, it would take only 100 ml of commercially available freshly brewed (infusion time 3 min) green tea and even less black tea to achieve similar concentrations of EGCG and the other catechins with a galloyl moiety in your tea. Accordingly, the second obstacle to the gene- relizability of the study is actually irrelevant.

Third- and lastly, there's yet still the fast reversal of the effects which suggests that it is necessary to become a habitual tea drinker to see long-term / lasting benefits of green tea (or as the data in Figure 3 suggests even catechin containing tea in general) on your body weight and, more importantly, body fat you're carrying around | Comment on Facebook!
References:
  • Bronner, W. E., and G. R. Beecher. "Method for determining the content of catechins in tea infusions by high-performance liquid chromatography." Journal of Chromatography A 805.1 (1998): 137-142.
  • Chow, HH Sherry, et al. "Effects of dosing condition on the oral bioavailability of green tea catechins after single-dose administration of Polyphenon E in healthy individuals." Clinical Cancer Research 11.12 (2005): 4627-4633.
  • Després, Jean-Pierre. "Body fat distribution and risk of cardiovascular disease an update." Circulation 126.10 (2012): 1301-1313.
  • Kobayashi, Makoto, et al. "Green tea beverages enriched with catechins with a galloyl moiety reduce body fat in moderately obese adults: a randomized double-blind placebo-controlled trial." Food & Function (2016).
  • Nakagawa, Kiyotaka, et al. "Effects of co-administration of tea epigallocatechin-3-gallate (EGCG) and caffeine on absorption and metabolism of EGCG in humans." Bioscience, biotechnology, and biochemistry 73.9 (2009): 2014-2017.